
Circular Harmonic Decomposition Approach for Numerical
Inversion of Circular Radon Transforms

Gaël Rigaud
ETIS-ENSEA/Univ.

Cergy-Pontoise/CNRS
95000 Cergy-Pontoise, France

gael.rigaud@ensea.fr

Maï K. Nguyen
ETIS-ENSEA/Univ.

Cergy-Pontoise/CNRS
95000 Cergy-Pontoise, France
mai.nguyen-verger@u-

cergy.fr

Alfred K. Louis
Fachbereich Mathematik

Universität des Saarlandes
D-66041 Saarbrücken,

Germany
louis@num.uni-sb.de

ABSTRACT
Numerical inversions via circular harmonic decomposition
for two classes of circular Radon transforms are established.
The first class deals with the Radon transform (RT) de-
fined on circular arcs having a chord of fixed length rotat-
ing around its middle point (CART) and the second is the
RT defined on a set of circles passing through a fixed point
of the plane (CRT). These circular Radon transforms arise
from the modeling of different modalities in Compton scat-
tering tomography (CST). Inversions via circular harmonic
decomposition are used for image reconstructions in CST.
Simulation results show the efficiency and interest of this
inversion method in imaging science.
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1. INTRODUCTION
Since the seminal work of J Radon [1], which finds numerous
applications (Computed Tomography, Single Photon Emis-
sion Computed Tomography (SPECT) and Positron Emis-
sion Tomography (PET), etc.) many extensions of this inte-
gral transform have been widely discussed, in particular in
the literature of imaging science. This is the case when re-
sults of measurements appear under the form of integrals of
a physical quantity over lower dimensional manifolds. The
relevant problem to solve is the recovery of the physical
quantity of interest as a function in R2. The field of such
problems is known in mathematics as integral geometry and
in image processing as image reconstruction.

As the circle is the simplest curve in the plane next to the
straight line, it becomes the natural object on which a new
Radon transform can be defined. Circular Radon transforms

along paths that are not on the zero sets of harmonic polyno-
mials were proved to be invertible. Quinto [2] has discussed
the case of all translations of a circle of fixed radius as well
as circles centered on a circle. Finally Compton scatter-
ing tomography, a two-dimensional imaging process based
on scattered radiation, has two modalities for which image
formation is built on Radon transforms defined on a set of
circles passing through a fixed point of the plane and on cir-
cular arcs having a chord of fixed length rotating around its
middle point.

In image reconstruction all these modelings of physical phe-
nomenon lead to an inversion of the established forward
transform in order to reconstruct the original function. But
generally the obtained inversion formula is not adapted for
computation because of singularities. A regularization has
to be applied and computational methods can be derived.

In this paper we describe two novel computational meth-
ods via circular harmonic decomposition (CHD) for circular
Radon transforms. The CHD was introduced by Cormack
[3, 4] and is very adapted to a polar approach of the stud-
ied forward transforms. Indeed Cormack has shown several
properties of the circular harmonic components of the data
for a given family of curves in the plane which lead to an
inversion and to a regularization procedure. This way per-
mits to fulfill the consistency criterion of the data and so to
reduce the number of artifacts, which is not the case of the
well-known ”Filtered Back-Projection” algorithm. Our work
is based on these two procedures and on a computational
approach of Chapman and Cary [5] who have discussed an
alternative algorithm to the ”Filtered Back-Projection” al-
gorithm for the inverse Radon transform. We first use the
same algorithm in the case of a circular-arc Radon transform
then we will establish a algorithm for the inverse circular
Radon transform defined on a set of circles passing through
a fixed point. Finally, we present numerical results of these
two algorithms used in emerging CST and compare them
with those obtained for conventional tomography modeled
by the classical Radon transform and computed by the fil-
tered backprojection algorithm in the first case and with
the inversion formula established by S.J. Norton [6] in the
second case.



2. COMPTON SCATTERING TOMOGRA-
PHIES BASED ON CIRCULAR RADON
TRANSFORMS

In this part, we will present the working principles of two
modalities in Compton scattering tomography and the as-
sociated Radon’s problems. We will see how to model the
physical phenomenon as an integral of the studied function
on the corresponding curve and how to inverse these trans-
forms.

2.1 Novel CST modality based on Circular-
Arc Radon transform

Consider a two-dimensional object represented by a non-
negative continuous function f(M) with bounded support
in R2. Fig. 1 shows how Compton scattering tomography
works. An emitting point source S is placed at a distance 2p
from a point detector D. We consider only the upper part of
space. This is possible because an angle collimator is placed
at D. The segment SD rotates around its middle O and its
angular position is given by ϕ.

Emitted photons are scattered at site M and some of them
are detected by the detector D at an energy Eω. Therefore
the detector can record scattered photons according to scat-
tered energy which is related to the scattering angle ω by
the Compton formula. Thus, for a fixed ϕ, to each energy
Eω corresponds a set of scattering sites on a circular arc
C(ϕ, ω).
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Figure 1: Principle of the new CST based on the
CAR transform.

Finally the detected radiation flux density g(ϕ, ω) is pro-
portional to the integral of the electron density f(M) with
M ∈ C(ϕ, ω) which can be written as the Radon transform
extended on the corresponding circular arcs C(ϕ, ω)

C̃2f(ϕ, ω) =

∫
(r,θ)∈C(ϕ,ω)

f(r, θ)ds (1)

where C̃2 is the circular-arc Radon transform (CART) es-

tablished in (ϕ, ω)-space and ds is the elementary length of
circular arc to be computed from the circular arc equation

r = p(
√

1 + τ2 cos2 γ − τ cos γ) , (2)

where τ = cotω and γ = θ − ϕ and with (ω, ϕ) ∈]0, π
2

] ×
[0, 2π]. Putting τ in equation (1), we obtain :

C2f(ϕ, τ) =

∫ π
2

−π
2

f(r(γ), γ + ϕ) r(γ)

√
1 + τ2√

1 + τ2 cos2 γ
dγ .

(3)
where C2 is the circular-arc Radon transform (CART) es-
tablished in (ϕ, τ)-space. Thus equation (3) is the image
formation.

The inverse transform can be worked out using the Fourier
angular components of f and C2f :



f(r, θ) =
∑
l

fl(r)e
ilθ

with

fl(r) =
1

2π

∫ 2π

0

f(r, θ)e−ilθdθ

and

C2f(ϕ, τ) =
∑
l

C2fl(τ)eilϕ

with

C2fl(τ) =
1

2π

∫ 2π

0

C2f(ϕ, τ)e−ilϕdϕ

(4)

Following [7] we give a new integral equation linking C2fl(τ)
to fl(r), the circular components of C2f(ϕ, τ) and f(r, θ).
Since γ = θ − ϕ and accounting for the invariance of the
integrand under γ ←→ −γ, equation (3) takes the form

C2fl(τ) = 2

∫ π
2

0

r(γ)

√
1 + τ2√

1 + τ2 cos2(γ)
fl(γ) cos(|l|γ)dγ .

(5)

The absolute value of l is due to the invariance : f−l(r) =
f∗l (r). Because of the equation of the circular arc (equation
(2)), we can show that

dγ
r(cos γ)√

1 + τ2 cos2 γ
=

dr√
τ2 − 1

4

(
p
r
− r

p

)2
. (6)

Now using this relationship between the differential elements,
we change back to the r-variable equation (5) to obtain:



τ C2fl(τ)√
1 + τ2

= 2

∫ p

p(
√

1+τ2−τ)

dr√
1− 1

4τ2

(
p
r
− r

p

)2
fl(r)

× cos

[
|l| cos−1

(
1

2τ

(
p

r
− r

p

))]
. (7)

This new form is adapted to Cormack’s inversion procedure
[3]. In the term cosh(l cosh−1(h(r, τ))), the function h(r, τ)
is a product of functions of r and of τ , i.e h(r, τ) = h1(r)×
h2(τ).

We can choose the following change of variables [7],

q =
1

τ
= tanω, and t−1 =

1

2

(
p

r
− r

p

)
. (8)

Then we apply the Cormack’s procedure [3] to invert equa-
tion (7) and obtain the inverse transform of the CART through
the circular harmonic decomposition :

fl(r) = (−)
2p(p2 + r2)

π(p2 − r2)2[
d

dt

∫ ∞
t

cosh(|l| cosh−1( q
t
))

q
√

( q
t
)2 − 1

C2fl(
1
q
)√

1 + q2
dq

]
t= 2pr

p2−r2

. (9)

An alternative form of this result can be obtained with a
further change of variables in the integration. Equation (9)
may be now recast as

fl(r) = (−)
2p(p2 + r2)

π(p2 − r2)2[∫ ∞
t

cosh(|l| cosh−1( q
t
))√

q2 − t2
d

dq

(
C2fl(

1
q
)√

1 + q2

)
dq

]
t= 2pr

p2−r2

.

(10)

Finally f(r, θ) is reconstructed through its Fourier expan-
sion with the circular harmonic components fl(r). We have
established the forward and inverse transforms in the case
of this new Compton scattering tomography. In the next
section, we will discuss how to use these transforms for nu-
merical image reconstruction.

2.2 Norton’s CST and Circular Radon trans-
form

In 1994, S.J. Norton [6] worked out a CST modality which
is based on a Radon transform on circles having a fixed
common point. The working principle is given by Fig. 2.
A point source S emits primary radiation towards an object
defined by its electron density function ne(r, θ), of which M
is a scattering site (running point).

A point detector D moves along an Ox -axis and collects, at
given energy E, scattered radiation from the object. The
physics of Compton scattering demands that the registered
radiation flux density g at site D is due to the contribution
of all scattering sites M lying on an arc of circle from S to
D subtending an angle (π − ω), where ω is the scattering
angle corresponding to the outgoing energy E, as given by
the Compton formula.
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Figure 2: Principle of Norton’s CST

Norton gave the expression of the projections g as :

g(ρ, ϕ) =

∫ π

0

dθ

∫ ∞
0

dr ρ ne(r, θ) w(r, θ; ρ, ϕ)

× δ [r − 2ρ cos(θ − ϕ)] (11)

where δ(.) is the 1-D Dirac delta function and w(.) is defined
by:

w(r, θ; ρ, ϕ) =
a r s(θ) P (ϕ)

4π (2ρ)3 sin2 θ
. (12)

In the above equation, a represents the area of an element of
detection, s(θ) expresses any angular dependance of the γ-
ray source distribution, and P (ω) (where ω = π/2+ϕ) is the
Klein-Nishina differential cross section. Mathematically, g is
essentially the Radon transform of the object electron den-
sity ne(M) on arcs of circle, when radiation attenuation and
photometric effects on radiation propagation are neglected.

Norton proposed an inverse formula given by:

ne(r, θ) =
1

π2

∫ 2π

0

dϕ

∫ ∞
0

dρ
g(ρ, ϕ)

w(r, θ; ρ, ϕ)

× h [r − 2ρ cos(θ − ϕ)] (13)

where



h(x) =

∫ ∞
−∞

e−iζx |ζ| dζ . (14)

This expression is the same convolution kernel employed in
the filtered Back-Projection algorithm used in x-ray trans-
mission CT. The difference is that the Back-Projection is
performed along straight lines in transmission CT, whereas
here the Back-Projection is performed around the circles
r = 2ρ cos(θ − ϕ).

Now let :


C1f(ρ, ϕ) = g(ρ, ϕ) (2ρ)3

P (ϕ)

f(r, θ) = ne(r, θ)
as(θ)r

4π sin2 θ

p = 2ρ

(15)

Substituting equation (15) in (11) we obtain:

C1f(p, ϕ) =

∫ π

0

dθ

∫ +∞

0

dr p f(r, θ) δ {r − p cos(θ − ϕ)} .

(16)

From (16) we use the Fourier angular components of f and
C1f (like previously) and we can show that :

C1fl(p) = 2

∫ p

0

dr fl(r)
cos
[
|l| cos−1

(
r
p

)]
√

1−
(
r
p

)2
dr . (17)

Equation (17) is precisely the integral equation for fl in the
case of a (β = 1)-curve of Cormack [3, 4]. Thanks to a
property between cos and cosh, he could derive the following
inverse formula for this circular Radon transform

fl(r) =
1

πr

∫ r

0

cosh(|l| cosh−1( r
p
))√

( r
p
)2 − 1

d

dp

[
C1fl(p)

]
dp . (18)

Finally f(r, θ) is reconstructed through its Fourier expansion
with the circular harmonic components fl(r). We have thus
established the forward and inverse transforms (eq. (17)
and (18)) in the case of the Norton’s Compton scattering
tomography.

In the next section, we will discuss how to use these trans-
forms for numerical image reconstruction and how to derive
novel algorithms based on circular harmonic decomposition.

3. NUMERICAL INVERSIONS
In this part, we will work out the numerical inversions that
we propose for the both Circular Radon transforms pre-
sented above.

3.1 Computation of inverse CART
In principle, one can use equation (10) to perform numerical
computations. However, assuming that the original function
is bounded, a close inspection of the integral kernel of equa-
tion (10) shows that it behaves as

lim
q→+∞

cosh(|l| cosh−1( q
t
))

q
√

( q
t
)2 − 1

≈ lim
u→+∞

2 e(|l|−2)u , (19)

where u = cosh−1( q
t
). Equation (19) presents an apparent

divergence when |l| > 2, since for q → ∞ the integrand
grows very rapidly. This explains that when |l| > 2, this
apparent divergence makes the q-integral unstable, and as
such the presence of noise in the data C2fl(1/q) for large
q is badly propagated into the calculation of fl(r) which
prevents simulation studies. It becomes then obvious that
equation (10) needs to be regularized.

Even if the circular arc doesn’t belong to the α-curves family
(defined by A.M. Cormack [3]), we will see that there is a
frequential link between them. Indeed by introducing :

Fl(t = 2pr
p2−r2 ) = (p2−r2)2

2p(p2+r2)
× fl(r)

Gl(q) =
C2fl( 1

q
)√

1+q2
.

(20)

we obtain :

Fl(t) = (−)
1

π

∫ ∞
t

dq
cosh(|l| cosh−1(q/t))√

q2 − t2
dGl(q)

dq

∣∣∣∣∣
t= 2pr

p2−r2

(21)

Equation (21) is precisely the straight-line Radon transform
inversion formula (α = 1) given by Cormack’s regularization
procedure. Thus with three changes of function, we pass
from the original space of CART definition to a new space
in which the CART becomes the ordinary Radon transform.
Cormack proposed a regularization procedure based on con-
sistency conditions of the circular harmonic components of
the data

∫ ∞
0

dq
dGl(q)

dq
qαl = 0 for αl = (l − 1), (l − 3), ..., > 0 .

(22)

Thanks to these conditions and a property of the Tcheby-
chev polynomial linking the polynomial of first kind (Tl(.))
to the second kind one (Ul(.))

Tl(x)√
x2 − 1

=

(
x−
√
x2 − 1

)l
√
x2 − 1

+ Ul−1(x) , (23)

he could derive the following regularised inverse formula for
the CART:



Fl(t) =
1

πt

∫ t

0

dq G
′
l(q) U|l|−1

(q
t

)

− 1

πt

∫ ∞
t

dq G
′
l(q)

(
(q/t)−

√
(q/t)2 − 1

)|l|
√

(q/t)2 − 1
. (24)

Then we follow the Chapman and Cary computional ap-
proach in the space where the Circular-Arc Radon transform
becomes the standard Radon transform. In this algorithm
we will consider that (q, t) ∈]0;Q]2 with the same sampling
∆t and where Q = tan(max{ω}). Now let q = t cosχ, (re-
spectively q = t coshχ) in the first (respectively the second)
integral of equation (24). Thus :

Fl(t) =
1

π

∫ π
2

0

dχ G′l(t cosχ) sin(lχ)

− 1

π

∫ cosh−1(Q/t)

0

dχ G′l(t coshχ) e−lχ (25)

Now we can define the discretized forms of Fl(t) and Gl(q)
as : {

Glk = Gl(k∆t)

Flj = Fl(j∆t),
(26)

where (j, k) ∈ [0,K]2 with K = Q
∆t

. The derivative G′l(q)
can be approximated by coefficients alkm where:

alk =
Gl(k+1) −Glk

∆t
. (27)

Equation (25) becomes so :

Flj =
1

π

[
j−1∑
k=0

alk (Il(χj(k + 1))− Il(χjk))

+

K−1∑
k=j

alk (Jl(χj(k + 1))− Jl(χjk))

 (28)

in terms of the primitive

Il(χjk) =

∫ χjk

sin(|l|x)dx = −cos(|l|χjk)

|l| for l 6= 0 (29)

and

Jl(χjk) =

∫ χjk

e−|l|xdx =

{
−e−|l|χjk/|l| if l 6= 0

χjk if l = 0
(30)

where

χjk =

 cos−1
(
k
j

)
for 0 ≤ k ≤ j

cosh−1
(
k
j

)
for j ≤ k ≤ K.

(31)

Finally the discretized form of the reconstruction equation
appears as

Flj =
1

|l|π

j−1∑
k=0

alk
(
cos |l|χj(k+1) − cos |l|χjk

)
+

1

|l|π

K−1∑
k=j

alk
(
e−|l|χj(k+1) − e−|l|χjk

)
(32)

And for l = 0 a separate expression exists

F0j = − 1

π

K−1∑
k=j

a0k

(
χj(k+1) − χjk

)
. (33)

So having obtained all the Flj , which are the discretized
circular components of the associated Radon transform, we
recover the theoretical circular components of our circular-
arc problem fl(r) by using formula (20) given by

fl(r) =
2p(p2 + r2)

(p2 − r2)2
Fl

(
2pr

p2 − r2

)
, (34)

The final step consists in working out the summation in
discrete form.

f(r, θ) =
∑
l

fl(r) e
ilθ. (35)

We have established an alternative algorithm of image re-
construction based on circular harmonic decomposition for
this new Compton scattering tomography modality.

3.2 Computation of inverse CRT
To establish our numerical inversion in the case of the Cir-
cular Radon transform presented above, we start from its
analytical inverse:

fl(r) =
1

πr

∫ r

0

cosh(|l| cosh−1( r
p
))√

( r
p
)2 − 1

d

dp

[
C1fl(p)

]
dp (36)

This formula has the same kind of singularities that in the
Circular-Arc Radon transform case since this transform be-
longs to the family of β-curves. So we can use the same
method to regularize it and obtain :



fl(r) =
1

πr

∫ r

0

(
r
p
−
√

( r
p
)2 − 1

)|l|
√

( r
p
)2 − 1

(
C1fl

)′
(p)dp

− 1

πr

∫ +∞

r

U|l|−1(r/p)
(
C1fl

)′
(p)dp (37)

Then we will adapt the Chapman and Cary approach to this
case. Indeed Chapman and Cary have studied the case of
the (α = 1)-curve and so the case of the standard Radon
transform. Now from the same idea we will propose a com-
putional approach to reconstruct the original function f(r, θ)
from the data C1f(p, ϕ). As we cannot consider an infinite
size, we shall define the maximum value of p, pmax, and a
minimum value, pmin, because a scattering site cannot be
the source. Since,

cosh−1(x) = ln(x+
√
x2 − 1) = − ln(x−

√
x2 − 1) (38)

we obtain

fl(r) =
1

πr

∫ r

pmin

e−|l| cosh−1(r/p)√
( r
p
)2 − 1

(
C1fl

)′
(p)dp

− 1

πr

∫ pmax

r

U|l|−1(r/p)
(
C1fl

)′
(p)dp (39)

We make the change of variable r = p cosh(χ) in the first
integral and r = p cos(χ) in the second one. The transform
(39) becomes :

fl(r) =
1

π

∫ cosh−1
(

r
pmin

)
0

e−|l|χ

cosh2 χ

(
C1fl

)′( r

coshχ

)
dχ

− 1

π

∫ cos−1
(

r
pmax

)
0

sin(|l|χ)

cos2 χ

(
C1fl

)′( r

cosχ

)
dχ (40)

To simplify the algebra and notation we consider that p and
r have the same sampling ∆r. So we can define the dis-
cretized forms of fl(r) and C1fl(p) as :

glk = C1fl(k∆r) and flj = fl(j∆r) (41)

where (j, k) ∈ [1,K]2 with K = ∆r
pmax

. Moreover we use
linear interpolation to simplify the algorithm and the cal-
culation of the derivative of the data gl. So in the interval
k∆r < p < (k + 1)∆r, we can write:

ḡlk =
gl(k+1) − glk

∆r
. (42)

Finally we obtain a discretized form of our transform (eq
(40))

flj = − 1

π

[
j−1∑
k=1

ḡlk
(
Jl(χj(k+1))− Jl(χjk)

)
+

K−1∑
k=j

ḡlk
(
Il(χj(k+1))− Il(χjk)

) (43)

in terms of the primitive integrals :

Il(χjk) =

∫ χjk sin(|l|x)

cos2 x
dx and Jl(χjk) =

∫ χjk e−|l|x

cosh2 x
dx .

(44)

The variables χjk corresponds to the discrete radii p = k∆r

χjk =

{
cosh−1

(
j
k

)
for 1 ≤ k ≤ j

cos−1
(
j
k

)
for j ≤ k ≤ K

(45)

We evaluate the primitive integrals (44) by recurrence :

In(x) =
2

n− 2
(tanx sin((n− 2)x)− cos((n− 2)x))

− n

n− 2
In−2(x) (46)

with the initial conditions :

I1(x) =
1

cosx
and I2(x) = −2 ln(cosx) (47)

In the same way, we make the change of variable u = eχjk

in the primitive and we let n = |l| − 1:

Jn(u) =

∫
du

un (u2 + 1)2 . (48)

So we obtain the following recurrence relation :

Jn+1(u) = − 1

nun (u2 + 1)
− n+ 2

n
Jn−1(u) (49)

with the initial conditions :

J0(u) =
u

2(u2 + 1)
+

1

2
arctan(u) and

J1(u) = −1

2
ln(u2 + 1) + ln(u) +

1

2(u2 + 1)
(50)



We have also the special case l = 0. In this case, we evaluate
the primitive integral J0(χjk)

J0(χjk) =

∫ χjk 1

cosh2 x
dx =

sinhχjk
coshχjk

=

√
1−

(
k

j

)2

(51)

hence,

f0j = − 1

π

j−1∑
k=1

ḡ0k

√1−
(
k + 1

j

)2

−

√
1−

(
k

j

)2
 .

(52)

So having obtained all the flj , which are the discretized
circular components of our circular problem by constructing
the theoretical fl(r). Finally we work out the summation in
discrete form to obtain the original function.

f(r, θ) =
∑
l

fl(r) e
ilθ. (53)

We have established an alternative algorithm of image recon-
struction based on circular harmonic decomposition for the
Norton’s Compton scattering tomography. Moreover this
algorithm is an alternative to which proposed Norton.

In the last section, we present the numerical results in order
to prove the efficiency of our algorithms.

4. SIMULATION RESULTS
In this section, we present the numerical simulations of both
circular Radon transforms (CART-CHD and CRT-CHD)
and compare the reconstructions obtained by the ordinary
Radon transform filtered back-projection (RT FBP) in the
case of C2 and by the Norton’s inverse formula, which can be
apparented to a ”filtered back-projection” on circles (NRT
FBP), in the case of C1.

Moreover the main aim of this work is to establish a new
imaging principle by Compton scattered radiation. This is
why other factors in realistic imaging systems are not treated
here such as medium attenuation, inhomogeneous electron
density and Poisson emission noise.

To illustrate and compare the quality of the reconstructions,
we define the normalized mean square error (NMSE) and
the normalized mean absolute error(NMAE):

NMSE =
‖Ir − Io‖22

N2
, (54)

NMAE =
‖Ir − Io‖1

N2
, (55)

where Ir is the reconstructed image, Io is the original image
(ground truth) and N2 is the size of the studied image.

4.1 Image reconstructions by CART-CHD and
RT-FBP

As an illstration of the feasibility of our new algorithm, we
present numerical simulations applied on the medical phan-
tom (Fig. 3). The scattering medium is discretized with
512× 512 of length units (pixels). We consider the number
of rotational positions Nϕ and the number of energy levels
Nω. These numbers define the corresponding angular sam-
pling steps dϕ and dω by :

dϕ =
2 π

Nϕ
and dω =

π

2Nω
. (56)

In order to have a ”well-conditioned” problem, the number
of projections (Nϕ × Nω) must be larger than the number
of image pixels (512× 512). This is why we take Nϕ = 720
and Nω = 500. Moreover we take the constant term p = 512
and min{ω} = dω.

Let us recall the classical Radon transform which is defined
as integral of object function on straight lines. The forward
Radon transform is:

g(u, ϕ) =

∫
R2

dxdy f(x, y) δ (u− x cosϕ− y sinϕ) , (57)

and its inverse transform is:

f(x, y) =

∫ π

0

dϕ

∫ +∞

−∞
du

∫ +∞

−∞
dν |ν| ×

e−2iπν(u−x cosϕ−y sinϕ)g(u, ϕ)

= − 1

2π2

∫ π

0

dϕ

{
P.V.

∫ +∞

−∞
du

∂g(u, ϕ)

∂u

1

u− x cosϕ− y sinϕ

}
.

(58)

Equation (58) is called the filtered backprojection method
(FBP). In this case, FBP is an exact inversion formula ob-
tained by combining the action of the ramp filter (|ν|)and
the backprojection operation of the Radon transform. This
is the most popular inversion method for the ordinary Radon
transform owing to its rapid algorithmic implementation.

The CART-CHD approach gives in general a reasonable im-
age quality in the reconstruction of the medical phantom
(Fig. 8). Indeed, contours and small structures are well re-
covered. Moreover, we can observe that there are a lot fewer
artifacts compared to FBP reconstruction (Fig. 7) around
the studied object. This is due to the fact that the CART-
CHD reconstruction is consistent with the Radon data. The
numerical error measurements (Table 1) obtained using the
CART-CHD are very close to those of the ordinary Radon
transform and proves the feasibility and the interest of this
algorithm.



4.2 Image reconstructions by CRT-CHD and
by NRT-FBP

Now we will present the numerical simulations in the case
of our algorithm of the circular Radon transform applied
on the Shepp-Logan phantom (Fig. 4). But this case we
put the phantom farther from the source in order to avoid
artifacts generated by the 1/r factor. Moreover the source is
placed below on the left of the image and the detector moves
along the axis Sx. The scattering medium is discretized with
256×256 of length units (pixels). We consider the number of
rotational positions Nϕ and the number of radii Np. These
numbers define the corresponding sampling steps dϕ and dp
by :

dϕ =
2 π

Nϕ
and dp =

4 ∗ 256

Np
. (59)

We take Nϕ = Np = 4 ∗ 256. As the system of the corre-
sponding CST is to not rotate around the object, the (ϕ, p)-
space is very large in front of the studied image. So to
”well-observe” the object we have to take a large maximum
value of p (4 times the image size).

The CRT-CHD approach gives a very interesting image qual-
ity in the reconstruction of the Shepp-Logan phantom (Fig.
11). Indeed, contours and small structures are better re-
covered than with the Norton’s inverse formula (Fig. 10).
Nevertheless we have more artifacts generated around the
studied object than in the Norton’s case. This is due to the
fact that the p ∈ R+ and that we have to fix a maximum
value pmax. Therefore this loss of information generated ar-
tifacts. To reduce this artifacts, we have to increase pmax
and so to increase the length of the detector in the related
CST. The numerical error measurements (Table 1) obtained
using the CRT-CHD are smaller as compared to those of
the Norton’s inverse formula and prove the feasibility of this
algorithm, particularly in the domain of the non-destructive
testing.

Method NMAE NMSE

RT-FBP Fig. 7 0.0056 8× 10−6

CART-CHD Fig. 8 0.006 2.8× 10−5

NRT-FBP Fig. 10 0.029 7.48× 10−4

CRT-CHD Fig. 11 0.028 5.9× 10−4

Table 1: ”NMSE and NMAE for various reconstruc-
tions of the medical phantoms (Figs. 3 and 4)”

5. CONCLUSION
Alternative algorithms for the numerical inversion of two
circular Radon transforms are established. Based on the
circular harmonic decomposition, the advantage of these
algorithms is to produce consistent image with the data
(forward transforms) as opposed to analytical conventional
methods like the ”filtered back-projection” algorithm and to
have the same computational complexity than the ”filtered
back-projection” method.

In the circular-arc Radon transform case, the simulation re-
sults prove the feasibility of the associated Compton scatter-
ing tomography which is suitable for biomedical imaging or
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Figure 3: Illustration of a medical phantom.
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Figure 4: Illustration of the Shepp-Logan phantom
of size 128× 128.

non-destructive testing for example and could present an al-
ternative to X-ray tomography. In the second case we have
compared our algorithm to the Norton’s inverse formula.
Even if it seems hard to choose the best reconstruction way,
we can say that both approaches are complementary since
Norton’s method gives a general reconstruction whereas ours
reconstructs with more details of the small structures and
the boundaries. The associated Compton scattering tomog-
raphy is more suitable for the industrial nondestructive eval-
uation since we can reconstruct the original medium from
one side of the object and without rotation.
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Figure 9: CRT of the Shepp-Logan phantom shown
in figure 4
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Figure 10: Reconstruction of the Shepp-Logan
phantom shown in figure 4 using NRT-CHD and
data in figure 9.
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Figure 11: Reconstruction of the Shepp-Logan
phantom shown in figure 4 using CRT-CHD and
data in figure 9.


