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Abstract. This paper presents a new approach for multiresolution reconstruction in 
3D Feldkamp-type cone-beam tomography. The approximative inverse is used to 
derive an inversion formula for reconstructing the wavelet approximation and 
wavelet detail coefficients of the volume slice by slice. Beyond the reconstruction 
algorithm, applications of multiresolution reconstruction in the field of non-
destructive testing are shown: The algorithm supports progressive reconstruction 
and local tomography for recovering only a region of interest inside the investigated 
volume. The features of the reconstruction algorithm are shown by means of 
simulation data as well as real data of an aluminium casting from automobile 
industry.  

1. Introduction 

Since wavelet analysis has become a powerful tool for signal and image processing, the 
multiresolution approach provides a solution for many practical applications. In X-ray 
computerized tomography algorithms for multiresolution 2D parallel beam, 2D fan-beam, 
and 3D cone-beam (Feldkamp-type) reconstruction using tensor or quincunx wavelets were 
introduced in [1,2,3]. These reconstruction formulas are based one the strong relationship 
between the continuous wavelet transform and the Radon transform as mentioned in [4].  
In this paper we introduce a new approach to achieve an algorithm for reconstructing an 
object at different resolutions: The approximative inverse, see [5], is a method for solving 
first kind operator equations gAf � in a stable way. Instead of determining the exact 

solution f , an inversion operator for ef  is calculated, where ef  is associated to f  by 

ef , using a mollifier e . Applying the approximative inverse to computerized 

tomography yields a reconstruction algorithm of filtered backprojection type [6]. If we 
choose the mollifier as a wavelet, ef  represents the wavelet coefficients of f . For the sake 

of simplicity we introduce a nonseparable multiresolution inversion formula only for the 
2D parallel scanning geometry. The resulting inversion formula using the approximative 
inverse is equal to the formula in [1]. In case of narrow cone-beam angles we make use of 
the Feldkamp algorithm [8]. We replace the standard ramp filter by the proposed ramp-
wavelet filter, where the 2D multiresolution acts slice by slice. 

In section 2 we provide the basic terminology of multiresolution analysis. A short 
introduction to the concept of the approximative inverse is given in section 3. The 
nonseparable multiresolution reconstruction algorithm using the approximative inverse is 
shown in section 4. Section 5 contains the results of the proposed algorithm. Finally a 
conclusion is given in section 6.  



2. Multiresolution Analysis 

The concept of multiresolution analysis (MRA) on )(2 RL  proposed in [7] is generalized to 

)( 22 RL  using a dilation matrix 22��ZD . Define DM det:� . A biorthogonal 2D-MRA 

requires a pair of dual scaling functions }
~
,{ ��  and 1�M  pairs of dual mother wavelets 

}~,{ ii ��  , 1,,1 �� Mi � . For Zj� , 2Zk� , and )( 22 RLf � we define the dilated and 

translated versions of f  concerning D  via 
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For a fixed ZJ � , the set }:{ 2
, ZkkJ ��  is a frame for the approximation space 

)( 22 RLVJ � . Let )( 22 RLWJ �  be the complement of JV  in )( 22
1 RLVJ �� . Then the set 
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kJ ��  is a frame for the detail space JW . Therefore, every 

)( 22 RLf �  can be expanded in a wavelet series: 
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The coefficients kJf ,,�  represent the discrete approximation of f  at decomposition level 

J , whereas the wavelet coefficients kJf ,,�  contain the details in which the discrete 

approximations of f  at decomposition level J and 1�J  are different. For the purpose of 

local tomography we are interested in reconstructing the approximation and detail 
coefficients directly from the projection data. 

3. Approximative Inverse 

In this section we give a short introduction to the concept of approximate inverse, for 

details see [5]. Let therefore be �  a bounded subset of nR  and let )(: 2 �� LU . Let V  be a 

Hilbert space and let VUA �:  be a linear, continuous operator. To determine for Uf � , 

Vg�  an approximative solution of gAf �  , we use the following approach: For each 

��x  define a mollifier Uex �  and an associated approximation 

 

Uxe efxf ,:)( � . 

 

Let �A  denote the adjoint operator of A . If there exists a Vvx �  such that xx evA �
* , we 

have 
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If xx evA �
*  is not solvable, we minimize the defect by solving xx AevAA �

*  and define 

Vxe vgxgS ,:)( � . We call the map XYS �:  the approximative inverse of A  and v  the 



approximation kernel. The advantage of this approach is that the reconstruction kernel can 
be computed independently of the data. Furthermore, invariances and symmetries of the 
operator A  can be transferred to S . 

4. Reconstruction method 

Let )S(R n  denote the Schwartz space of rapidly decreasing functions on nR  and 1�nS  the 

unit sphere in nR . For )( nRSf �  and nR�w  we define the Fourier transform 
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4.1. Radon transform 

In this section we introduce some basic properties of the radon transform. A detailed 

overview can be found in [9]. For )( nRSf � , 1�� nS� , and Rs�  the Radon transform is 

defined 
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The Fourier slice theorem shows the strong relationship between the Radon transform and 
the Fourier transform: For R��  we have 
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Let fRsgsg ��� �� :)(:),(  be in the range of the radon transform and nR�x . The adjoint 

operator of R  has the form 
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With n�� , nR�w  we define the Riesz potential 
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Using the Riesz potential we are able to formulate the following inversion formula: 
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where the Riesz potential acts on the second variable. 
 



4.2 The approximative inverse of the Radon transform 

We solve now the problem gRf �  for )S(R 2�f using the approximative inverse. For 
2R�x  and )S(R 2�xe  we define  

xx eRIv 11)2(
2

1
: ��

� �  

 
Then, due to the inversion formula for the Radon transform, xv  solves the equation 

xx evR �
�  and is therefore the reconstruction kernel of the approximative inverse of the 

Radon transform. We have 
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4.3 Reconstruction algorithm 

For a fixed ZJ �  and 2R�x we define the mollifier xJxe ,: �� . The approximative inverse 

has the form 
 

xjxe fefxf ,,,)( ���  

 

Hence the approximative inverse evaluated at 2Zk�  is equal to the wavelet coefficient 

kjf ,,� . To derive an inversion formula we define for )( nRSh�  and nRy�  the 

translation operator )(: yhhTy Г�� . Since fRTfTR
yy ��� ,�  and )(0,, xDRR J

JxJ ��� �� ��  

we conclude 
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The inversion formula is of filtered backprojection type and leads therefore to a fast 
implementation. We are able to formulate an inversion formula to reconstruct the 

approximation coefficients kjf ,,�  in the same way.  



5. Results 

We have used a multiresolution analysis with quincunx decimation, i.e. the dilation matrix 
was defined )11;11(: ��D . Starting with a pair of 1D biorthogonal filters, we have used the 

McClellan transform [10] to generate 2D nonseparable diamond shaped filters. The near 
coiflet wavelet with five coefficients [11, Table III] was implemented to create our results 
due to its good localization property concerning the Radon transform [3]. Figure 1 shows 
the 2D near coiflet scaling and wavelet filter created via the McClellan transform. 

 

  
a) b) 

Fig. 1: 2D near coiflet filter created via McClellan transform. a) scaling filter. b) wavelet filter. 

 
 

  
a) b) 

  
c) d) 

Fig. 2: Fan-beam reconstruction: a) Approximation and detail coefficients at decomposition level 4 using the 
proposed reconstruction method. b) Zoomed approximation coefficients from selected region in a). c) 

Synthesis of coefficients in a). d) Reconstruction using ramp filtered backprojection. 

 
The proposed algorithm for 2D reconstruction was applied to simulated fan-beam 

projections of the Shepp-Logan phantom. The reconstruction was performed on a 512512�  



pixel grid using 400 projection with 512 detector pixels equidistantly spaced on ]2,0[ � and 

fan-beam angle �6,14 . Figure 2 shows the results of the proposed reconstruction method 

and a comparison with the standard filtered backprojection using ramp filtering. The 
approximation and detail coefficients in figure 2a) are displayed in the contrast range  

]27.0;27.0[� , whereas in figure 2b)-d) we have used the range ]026.1;0.1[ .  

 

  
a) b) 

  
c) d) 

Fig. 3: Feldkamp-type cone beam reconstruction of a decentralized slice: a) Approximation and detail 
coefficients at decomposition level 4 using the proposed reconstruction method. b) Zoomed approximation 
coefficients from selected region in a). c) Synthesis of coefficients in a). d) Reconstruction using ramp filtered 

backprojection. 

 
Figure 3 illustrates the results of a Feldkamp-type cone beam reconstruction with the 
proposed ramp-wavelet filtering using real data of an aluminium casting The reconstruction 
was performed on a 181512512 ��  voxel grid using 400 flat panel detector projections 

with 512512�  pixels equidistantly spaced on ]2,0[ � and cone beam angle �8,6 . The 

approximation and detail coefficients in figure 3a) are displayed in the contrast range  
]27.0;27.0[� , whereas in figure 3b)-d) we have used the range ]89.5;0.0[ . 

For practical applications the possibility to perform a progressive reconstruction is 
the main advantage of multiresolution tomographic reconstruction. Reconstructing the 
approximation coefficients at a high decomposition level yields a first impression of the 
specimen. After selecting a region of interest within the approximation only the detail 
coefficients of the selected region plus a certain border must be reconstructed to achieve 
high resolution inside the region of interest. Figure 4 shows an example using again the 
aluminium casting from figure 3. Figure 4a) shows the approximation coefficients at 
decomposition level four and the detail coefficients of a selected region of interest. 
Performing a synthesis using only these detail coefficients yields high resolution inside the 
region of interest and a coarse reconstruction elsewhere, see figure 4b). A zoomed version 



of the locally reconstructed region of interest and the corresponding region of a ramp 
filtered backprojection can be seen in figure 4c)-d). The contrast ranges in figure 4 are the 
same as in figure 3. 
 

  
a) b) 

  
c) d) 

Fig. 4: Local Feldkamp-type cone beam reconstruction inside of a decentralized slice: a) Approximation and 
selected detail coefficients at decomposition level 4 using the proposed reconstruction method. b) Synthesis 
using the coefficients in a). c) Zoomed region of interest as selected in b). d) Corresponding region of interest 

inside of a ramp filtered backprojection. 

6. Conclusion 

We have proposed an inversion formula for nonseparable multiresolution tomographic 
reconstruction using the approximative inverse. Applying the approximative inverse to 
computerized tomography yields a family of inversion formulas. We have shown that 
nonseparable multiresolution tomographic reconstruction is a special case within this 
family of inversion formulas. A synthesis of the calculated approximation and detail 
coefficients yields a reconstruction image that differs only slightly from the associated 
ramp filtered backprojection image. We have illustrated that the progressive reconstruction 
feature makes the proposed method useful for practical applications, for example local 
tomography.  
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