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Abstract: We present an efficient numerical algorithm for the design of  
anti-reflection coating (ARC). In contrast to the widely used direct design 
where the behaviour of the field is investigated, we consider the inverse 
problem. Our purpose is to determine the best material for the ARC which 
matches with some sought values of the field at the surface. Mathematically, 
we solve an inverse scattering problem to identify the refractive index of the 
ARC. For modelling, the light propagation throughout a stratified ARC the 
time-harmonic Maxwell equations are reduced into one dimensional Helmholtz 
equation with prescribed boundary conditions. From this BVP, we derive an 
equivalent formulation as a Fredholm integral equation. The problem is 
nonlinear and ill-posed. We apply Born approximation for linearisation. To 
obtain stable solutions, we present numerical results using the method of 
approximate inverse (AI). We also carry out numerical tests to compare AI to 
Tikhonov-Phillips method. 
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1 Introduction 

Anti-reflection coatings (ARCs) are thin films which are deposited on optical materials to 
enhance their reflection and/or transmission properties. They are widely used in many 
application areas such as displays, ophthalmics, camera lenses to mention just few. In 
particular, ARCs increase significantly the performance of solar cells, see Chen (2001, 
2001). These thin films with specified refractive index are deposited onto the solar cells 
to capture the sun light and compel the propagation of the electromagnetic waves across a 
boundary between two media with two different refractive indices, see, e.g., Abazid et al. 
(2013), Mahdjoub and Zighed (2005) and Nubile (1999). 

The design of ARC is usually performed in a direct way where a prototype with 
specified optical properties of the coating is considered and the generated 
electromagnetic field is investigated. The constitutive properties are calibrated until the 
desired effect is realised. Our approach is based here on the optimal contrast ansatz. The 
objective is to determine the refractive index for the ARC from given values of the 
electromagnetic field at the surface. Thus, we solve an inverse electromagnetic scattering 
problem to identify the space dependent refractive index of the optical coating from 
specified reflection coefficients at the surface for multiple frequencies. For the physical 
modelling, we consider a stratified medium with space-dependent refractive index. From 
the Maxwell equations an inverse scattering problem for the Helmholtz equation in one 
dimension is derived. The methods for solving such an inverse problem can be classified 
according to two main approaches: applying nonlinear techniques, e.g., iterative 
algorithms or solving a linearised inverse problem. The nonlinear methods recover the 
unknowns of the problem iteratively from an a priori guess by solving a sequence of 
forward problems via, e.g., finite difference schemes (Lesnic, 2010). For further methods,  
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we refer to Chen and Rokhlin (1992) based on trace formula and to Dunn and Hariharan 
(1984) using Spline approximation projection. For linearised inversion schemes, we may 
cite, e.g., Hagin (1981) based on approximations of Born or Rytov type which are valid 
for media with low contrasts. 

For solving our inverse scattering problem, we have to overcome two difficulties: on 
the one hand the nonlinearity due to the dependence of field on the object’s contrast 
function, on the other hand the ill-posedness of the problem as large errors on the solution 
are induced by errors on the data even for a small noise. 

We linearise the mathematical model using the Born approximation, see Kak, A.C. 
and Slaney (1988) and Natterer (2004). In this framework, we assume the scattered field 
to be small enough and neglected in comparison with the incident field so that we get a 
linear Fredholm integral equation of the first kind. For practical use, we remain in the 
scope of the Born approximation which requires some limitations on the contrast function 
and on the relevant range of the wave numbers. 

The ill-posedness of the inverse problem is caused by the non-uniqueness of the 
solution and the ill-conditioning of the integral operator. We apply a regularisation 
method to stabilise the solution (Lakhal and Louis, 2008; Lakhal, 2010, 2013).  
For the analytical and numerical study of regularisation methods for ill-posed problems 
we refer to Louis (1989, 1999). We apply here the method of the approximate  
inverse which is a stable and flexible regularisation scheme. It is efficient and robust for 
solving linear problems (Louis, 1999) and nonlinear problems (Louis, 1996, 1998). It is 
also powerful for image reconstruction (Louis, 2008), for feature reconstruction (Louis, 
2011), and for solving inverse problems on Banach-spaces (Schuster and Schöpfer, 2010; 
Kohr, 2013). 

We outline the content of this paper as follows: in Section 2, we present the physical 
background and derive the boundary value problem (BVP) from the Maxwell equations. 
In Section 3, we transform the model into an equivalent integral equation of  
Lippmann-Schwinger type. In Section 4, we deal with linearisation of problem using 
Born approximation. The application of the method of the approximate inverse to solve 
the linearised problem is treated in the same section. In the last section, we present some 
numerical results. 

2 Physical background 

For the sake of completeness we recall in this section some classical results about the 
physics of electromagnetic waves, see Born and Wolf (1999). Based on the Maxwell’s 
equations in stratified media we use the mathematical modelling as a BVP for the 
Helmholtz equation in one dimension. We deal with the case of a normal incidence, 
namely the incident angle θ = 0, see Figure 1. 
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Figure 1 ARC in contact with a glass substrate 

 

We consider a plane time-harmonic wave propagating through a stratified non-magnetic 
medium with a constant magnetic permeability μ0 and a dielectric permittivity ε = ε(z) 
where z is the direction of stratification and of incidence. We suppose the electric wave to 
be linearly polarised in the direction perpendicular to the plane of incidence, i.e., a 
transverse electric (denoted by TE) wave. An electromagnetic wave is said to be 
transverse magnetic (denoted by TM) when it is linearly polarised with its magnetic wave 
orthogonal to the plane of incidence. We lose no generality here by considering only a TE 
wave since any plane wave with an arbitrary polarisation may be decomposed into two 
waves, one is TE and the other is a TM wave. Then, we may use the duality between the 
electric and the magnetic fields in the Maxwell’s equations to deduce results on TM from 
corresponding results on TE. For a TE wave, the polarisation is along the x-direction, this 
means Ey = Ez = 0. The Maxwell’s equations read 

0 0,iωμ∇× − =E H  (1) 

( ) 0.iωε z∇× + =H E  (2) 

The coating space-dependent permittivity is given by 

( )2
0 0( ) ( ) 1 ( ) ,ε z ε n z ε f z= = +  (3) 

with n(z) and f(z) the refractive index and the contrast function of the coating 
respectively. We have the free space wave number 0 0 .κ ω μ ε=  We further set the 
magnetic permeability μ0 = 1 since we have a non-magnetic medium. Inserting the  
TE-wave in the Maxwell equations, we get 

2 2
2 2

2 2
( ) 0.x x

x
E E κ n z E
y x

∂ ∂
+ + =

∂ ∂
 (4) 
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Using a separation ansatz Ex = v(y)u(z), we get the differential system provided that the 
complex valued functions u and v do not vanish: 

2( ) ( ) ( ),
( ) ( )

v y u z κ ε z
v y u z
′′ ′′

− = +  (5) 

where the left hand side depends on y and the right hand side depends on z. It yields that 
there exists a positive constant for physically relevant solutions 

2( ) ,
( )

v y a
v y
′′

= −  (6) 

and 
2 2 2( ) ( ) ( ) ( ).u z κ n z u z a u z′′ + =  (7) 

Let α be such that 
2

2
2

,
κ

=
αα  then 

( )2 2 2( ) ( ) ( ) 0.u z κ n z u z′′ + − =α  (8) 

It follows that 

( )1 2( ) (0) ,iκ y iκ yv y v c e c e−= +α α  (9) 

with the constants c1, c2. Consequently 

( )1 2( ) ,iκ y iκ y
xE u z c e c e−= +α α  (10) 

where the complex-valued function u, depending on z, satisfies the differential equation 
(8). In the framework of ARC, we consider an incident wave 0( ) ,iκn z

incu z e=  where n0 is 
the refractive index of the air environment (n0 = 1). The ARC has a given thickness d and 
a refractive index nARC(z) = n(z), in contact with a glass substrate of uniform refractive 
index nGlass = ns = 1.52. Let the interval Ω = (0, d) ∈  be the bounded domain of the 
relevant coating with the points z = 0 and z = d as the ARC boundaries. We consider only 
wave propagation in the z-direction, i.e., we set α = 0 in (8), where u′′  is the second 
derivative of u with respect to the model variable z. Denoting the magnitude of Ex with u, 
we get the scalar Helmholtz equation 

2 2( ) ( ) ( ) 0, (0, ),u z κ n z u z z d′′ + = ∈  (11) 

where u′′  is the second derivative of u with respect to the model variable z. Equation (11) 
represents our model in the coating’s interval (0, d). For the sake of scaling into the 
interval [0, 1], we replace x with x / d to obtain 

2 2 2( ) ( ) ( ) 0, (0,1).u z κ d n z u z z′′ + = ∈  (12) 

If we denote with β = κd the non-dimensionalised wave number, we get 
2 2( ) ( ) ( ) 0, (0,1).u z n z u z z′′ + = ∈β  (13) 
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Equation (13) is the second order differential Helmholtz equation with variable 
coefficient. It represents our model problem with the related boundary conditions. These 
are generated by the continuity of the tangential components of electric and magnetic 
fields across the boundaries z = 0 and z = 1. The continuity at the upper interface of the 
slab (z < 0) implies that each tangential component of the electromagnetic fields is 
expressed as sum of the incident and reflected (scattered) fields. Since the magnetic field 
H is indicated by the gradient of the electric field E, the continuity condition is thus 
reduced into the magnitudes of the electromagnetic field u(0) together with its first 
derivative (0).u′  The solution u(z) of equation (13) at z < 0 is a linear combination 
between the incident and reflected fields 

0 0( ) ( ) , 0.in z in zu z e e z−= + <β ββR  (14) 

The first derivative of u(z) is given by 

0 00 0( ) ( ) , 0,in z in zu z in e in e z−′ = − <β ββ β βR  (15) 

where R(β) is called the reflection coefficient. Practically, the reflection coefficient can 
be measured for any value of β which is ranging in the interval [βmin, βmax]. In the case of 
the inverse problem of our model, the varying of the wave number β is motivated by the 
need of identifiablity of the solution of the inverse problem. 

By taking the values of u(z), ( )u z′  at z = 0 we obtain the boundary condition 

0 0(0) (0) 2 .u in u in′ + =β β  (16) 

The continuity at the lower interface of the slab (z > 1) considers only the transmitted 
wave. The second boundary condition is hence similarly produced by taking the values of 
u(1) and (1).u′  The solution u(z) of equation (13) at z > 1 is given by 

( ) ( ) , 1,sin zu z e z−= >ββT  (17) 

where ( )βT  is the transmission coefficient. The first derivative ( )u z′  is given by 

( ) ( ) .sin z
su z in e′ = + ββ βT  (18) 

We take the values of u(z), ( )u z′  at z = 1 to obtain the second boundary condition 

(1) (1) 0.su in u′ − =β  (19) 

Considering the equation (13) in addition to the slab boundary conditions (16), (19) 
produces mainly our model as a BVP: 

2 2

0 0

( ) ( ) ( ) ( ), (0,1),
( ) (0) (0) 2

(1) (1) 0.s

u z u z f z u z z
BVP u in u in

u in u

′′ + = − ∈⎧
⎪ ′ + =⎨
⎪ ′ − =⎩

β β
β β,
β

 (20) 

In the direct problem, we are concerned with the determination of the scattered 
electromagnetic field for a given incident field impinging upon our medium with given 
electromagnetic properties, namely the given space-dependent refractive index of the 
coating. However, in the inverse problem, we have to determine the refractive index of 
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the coating depending on the given incident and scattered fields which are represented by 
the reflection coefficients. 

3 Integral equation formulation 

In this section, we formulate the BVP (20) as Fredholm integral equation of the first kind. 
We have 

2 2( ) ( ) ( ) ( ).u x u x f x u x′′ + = −β β  (21) 

It is well known from the theory of differential equation that the total solution of equation 
(21) is the sum of solutions of its homogeneous and inhomogeneous form 

hom inhom( ) ( ) ( ).u x u x u x= +  (22) 

The fundamental solution of the homogeneous Helmholtz equation with respect to the 
boundary conditions is given as 

( 2) 0
hom ( ) : ( ).i x i xu x e ηe u x− −= + =β β  (23) 

where 1: .
1

s

s

nη
n

−
=

+
 We write the solution of the inhomogeneous Helmholtz equation using 

the integral operator 
1

2
inhom

0
( ) ( , ) ( ) ( )u x K x y u y f y dy= − ∫ ββ  (24) 

for a given contrast function f of the coating. We get a Fredholm equation of the second 
kind with respect to the field u 

1
2 0

0
: ( , )

( ) ( , ) ( ) ( ) ( ), (0,1).
K x y

u x K x y f y u y dy u x x
=

+ = ∈∫ ���	��

β

ββ  (25) 

Equation (25) is known in the scattering theory as Lippmann-Schwinger integral 
equation. Formulating (25) using operator notation produces: 

0( )K u u+ =I  (26) 

with the identity operator I and the integral operator K given by: 

l1

0
( ) ( , ) ( ) .Ku x K x y u y dy= ∫ β  (27) 

The integral kernel Kβ(x, y) corresponding to our model is given as: 

( ) ( 2)

( ) ( 2)

1 for
2 2

( , )
1 for

2 2

i x y i x y

i x y i x y

η
e e x y

i i
K x y

ηe e x y
i i

− − − + −

+ − − + −

⎧ + ≤⎪⎪= ⎨
⎪ + >
⎪⎩

β β

β
β β

β β

β β

 (28) 
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The inverse problem is concerned with the determination of refractive indices of the 
optical coating based on measurements of the electric field at the surface of the coating 
for different values of the wave numbers. 

The integral formulation of the BVP is 
1

0 2
0

( , ) ( , ) ( , ) ( , ) ( )u x u x K x y u y f y dy= − ∫ ββ β β β  (29) 

for x ∈ (0, 1). The electric field is measured at x = 0, then 
1

2 0
0

: ( )ˆ: ( , )

(0, ) ( , ) ( ) (0, ) (0, )
gK y

K y u y f y dy u
==

= −∫ ���	��
����	���
β

ββ

β β β β  (30) 

where 

( )21(0, ) .
2

i y i y iK y e ηe e
i

−= +β β β
β β

 (31) 

For a given field u we have to find the contrast function f. This inverse problem faces two 
difficulties. First of all, it is nonlinear because the dependence of the field u on the 
contrast function f is nonlinear. Secondly, the problem is ill-posed as the underlying 
operator is a compact operator between two Hilbert spaces. Hence, we need to apply 
regularisation methods. We refer to Louis (1989) for general analytical study of 
regularisation methods of ill-posed problems. We will apply the method of approximate 
inverse as a regularisation method in the next section. 

4 Method of solution 

4.1 The linearised problem via Born approximation 

We linearise the problem using the Born approximation method where we suppose that 
uinhom is very small compared to u0 so that it can be neglected in (30) to get: 

0( , ) ( , )u y u y≈β β  (32) 

Then 

1
2 0 0

0
:( ): ( , )

(0, ) ( , ) ( ) (0, ) (0, ).
K y

K y u y f y dy u u
==

= −∫
�

����	���
����	���
β

ββ

β β β β  (33) 

In operator notation equation (33) reads as 

( ) [ ]( )2 2 min max: [0,1] ,A X L L Y= → =β β  (34) 

1

0
( ) ( , ) ( ) ( ),Af K y f y dy g= =∫ �β β β  (35) 

where 
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2
2 2 ( 2) 2( , ) .

2 2
i y i y iη η

K y e e e
i i i

− −= + +� β β ββ β β
β  (36) 

The linearised problem seeks f as a solution of the equation: 

( ) ( ) 1, ,j jAf g j M= = …β β  (37) 

where βj are samplings of the wave numbers. The Born approximation is a practical and 
feasible linearising method. The condition for the validity of the Born approximation is 
that the contrast function f is compactly supported and satisfies the inequality 

(0, )
sup ( ) 4

x d
κd f x πc

∈
<  (38) 

where c is a small constant, say c = 0.16, see, e.g., Natterer (2004). The left hand side of 
this inequality is a rough estimate for the phase shift between the incident field and the 
wave propagation throughout the object. The range of the wave numbers [βmin, βmax] 
taken in the numerical test examples must satisfy the condition above in order to get a 
good reconstruction. 

4.2 The approximate inverse 

We use the method of the approximate inverse (AI), see Louis (1996). AI is a stable 
regularisation method since the reconstruction kernel γ

xψ  is precomputed independently 
from the data g. Some other advantage of this method is the flexibility in the choice of the 
mollifier γ

xδ  appropriately to the problem. For the linear compact operator A in (34), this 
method solves the equation (37) by computing an approximation 

( ) , with .γ γ
γ x x xXf x f δ δ δ= ≈  (39) 

The suitable mollifier γ
xδ  converges (as γ tends to zero) to the Delta distribution δx for the 

reconstruction point x. To relate the data g to the solution we have to determine a 
reconstruction kernel γ

xψ  by solving the following auxiliary problem: 

* .γ γ
x xA ψ δ=  (40) 

It holds: 

( ) , γ
γ x Xf x f δ=  (41) 

*, γ
x Xf A ψ=  (42) 

, γ
x YAf ψ=  (43) 

, : ( )γ
x γYg ψ S g x= =  (44) 

The adjoint operator of A is: 

[ ]( ) ( )*
2 min max 2: , [0,1]A L L→β β  (45) 
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( ) max

min

* *, ( ) ( , ) ( ) , [0, 1].A g y K y g d y= ∈∫ �β

β
β β β  (46) 

Applying the adjoint operator on the reconstruction kernel we get 

( ) max

min

* *( ) ( , ) ( ) ( ), [0, 1]γ γ γ
x x xA ψ y K y ψ d δ y y= = ∈∫ �β

β
β β β  (47) 

with 
2

* 2 2 ( 2) 2( , ) ( , ) .
2 2

i y i y iη ηK y K y e e e
i i i

− + − −−
= = − −� � β β ββ β ββ β  (48) 

The reconstruction kernel can then be computed numerically. 

5 Numerical results 

For testing the proposed reconstruction method, we consider the contrast function 

1for 0
2( )

11 for 1
2

x x
f x

x x

⎧ ≤ ≤⎪⎪= ⎨
⎪− + < ≤
⎪⎩

 (49) 

The ARC is laid above the glass film which covers the solar cell. The refractive index 
n(x) of our inhomogeneous layer must fall gradually from that of air environment to the 
glass substrate. Therefore, it ranges between the values 1 and 1.52 which are the 
refractive indices of the air and the glass respectively. Since n2 = 1 + f, then the contrast 
function varies between the values 0 and 1.25 which are realistic boundaries for the 
contrast function. In our numerical reconstructions, we chose low contrasts (f = 0 till  
f = 0.5) to coincide with the Born approximation which is valid for low contrasts. 

To generate the data, we solve the forward problem using a quadrature method 
(trapezoidal rule) to obtain a solution of the Fredholm integral equation of the second 
kind (25), avoiding the inverse crime. A comparison between exact and numerical 
solution of the electric field for a constant contrast function is given in Figure 2. The 
reconstruction kernel γ

xψ  is calculated numerically as a solution of equation (40) 
independently of the data. For the reconstruction of the constant contrast function  
f(x) = 0.1 in the interval [40,900], see Figure 3. We test the validity of the Born 
approximation by considering the same function in the interval [15,900] where the 
condition of this approximation is not satisfied, see Figure 4. For reconstruction of the 

space-dependent contrast function 1 ,
4

f y=  see Figure 5. The data are generated using 

the direct solver. In the case of example (49), we also validate the linearisation with the 
Born approximation. Therefore, we compare the numerical solution of equation (25) with 
the linearised integral equation (33), see Figure 6. For the inversion, we compare the 
calculated results using AI with the classical method of Tikhonov-Phillips which uses the 
minimiser ||Af – g||2 + γ2||f||2, see Figure 7. A reconstruction with perturbed data for the 
same example is represented in Figure 8. 
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Figure 2 Direct simulation L2 – Relative error = 0.0023 for λ = 80 nm(see online version  
for colours) 

 

 

Figure 3 The inverse problem: reconstruction of f(x) = 0.1 in the interval [40, 900]  
L2 – Relative error = 0.1350 for the method of AI (see online version for colours) 

 

Figure 4 The inverse problem: bad reconstruction of f(x) = 0.1 in the interval [15, 900]  
(see online version for colours) 

 

Notes: Since this interval dose not satisfy the validity of Born approximation (38),  
L2 – Relative error = 2.0911 for the method of AI. 
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Figure 5 The inverse problem: reconstruction of the function 1( )
4

f x x=  for exact solution (in 

blue) and reconstructed solution for the AI (in red) and TP (in green) as methods of 
regularisation (see online version for colours) 

 

Notes: The relative errors are 0.0905 and 0.5355, respectively, with simulated data 
considered for a wave number ranging between 60 and 1,300 nm. 

Figure 6 Linearisation validity: L2 – Relative error = 0.1178 for simulated data (in blue) and  
one-time linearised data (in red) using the first Born approximation (see online version 
for colours) 
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Figure 7 The inverse problem: exact solution (in blue) and reconstructed solution for the 
approximate inverse (in red) and Thikhonov-Phillips (in green) as methods of 
regularisation (see online version for colours) 

 

Notes: The relative errors are 0.2282 and 0.1911; respectively, with simulated data 
considered for a wave number ranging between 350 and 900 nm. 

Figure 8 The inverse problem: reconstruction of example (49) with perturbed data of level 0.2% 
with relative errors 0.1996 and 0.2336 for AI and TP respectively (see online version 
for colours) 

 

6 Conclusions 

For the design of ARCs we solved an inverse scattering problem. This approach enables 
us to apply a stable numerical algorithm for determining the optimal refractive index of 
the coating from the desired reflection coefficients at the surface. Choosing the best 
material for the ARC depends on appropriate given reflection coefficients (data). If the 
data are given in the sense of energy-control, then the best material will be determined 
via our algorithm. We tested our approach using simulated data generated by a direct 
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solver. We also checked the validity of the Born approximation for the linearisation of 
the inverse problem. We tested the stability of the method of the approximate inverse and 
compare it to the widely used Tikhonov-Phillips regularisation. The extension of this 
contribution using nonlinear approximation of higher order and its validation with 
experimentally generated data will be subject to a future work. 
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