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Numerical Aspects of Spatio-Temporal Current
Density Reconstruction from EEG-/MEG-Data

Uwe Schmitt, Alfred K. Louis*, Felix Darvas, Helmut Buchner, and Manfred Fuchs

Abstract—The determination of the sources of electric activity
inside the brain from electric and magnetic measurements on the
surface of the head is known to be an ill-posed problem.

In this paper, a new algorithm which takes temporal a priori
information modeled by the smooth activation modell into account
is described and compared with existing algorithms such as
Tikhonov–Phillips.

Index Terms—Electronencephalography, inverse source recon-
struction, magnetoencephalography, spatial-temporal current
density reconstruction.

I. INTRODUCTION

I NVERSE source reconstruction has many applications in
clinical and theorectical medicine. Examples are the nonin-

vasive localization of focal epileptogenic discharges [1], [2] and
the study of somato sensoric evoked potentials (SEPs) [3]. An
overview of reconstruction methods is given in [4]. The same
techniques can be applied to the human heart, e.g., in order to
localize the origin of premature and extrasystolic beats [5].

Measurements of the electromagnetic activity of the brain
with electroencephalography (EEG) or magnetoencephalog-
raphy (MEG) provide an excellent temporal resolution,
compared with positron emission tomography (PET) or func-
tional magnetic resonance imaging (fMRI). EEG and MEG
have a considerable lack of spatial resolution and are strongly
affected by noise. As we will see, the problem of determining
electrical sources inside the scalp from EEG/MEG-mea-
surements is ill posed. Thus, we need additional spatial and
temporal information about the brain activity in order to tackle
this problem.

There are two different strategies for the solution of the in-
verse problem.

• By optimization techniques a small number of dipoles
and their parameters (location, orientation and magnitude)
are calculated ensuring best fit between measured data
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and forward calculated potentials, respectively, magnetic
fluxes [6], [7]. This is a nonlinear problem and regulariza-
tion is achieved by the small number of parameters. An
important problem is the correct estimation of the number
of dipoles. Also, in general, only the cross product of lo-
cation and moment of dipole is determined [17].

• Alternatively, in the current density reconstruction (CDR)
the distribution of the currents is determined. Being an
under-determined problem further information about the
currents is needed, introduced as additional constraints.
One possible constraint is the minimum norm criterion
[8], [9]. Current CDR procedures reconstruct sources
seperatly for each time slice. We present a new CDR
method by introducing a temporal constraint, thesmooth
temporal activation model. This constraint also achieves
reconstructions with a deeper insight into the time dy-
namics of the sources. CDR techniques lead in some
cases to linear problems. For a survey of different CDR
techniques, see [10]. CDR methods are getting more and
more important in EEG/MEG-source localization practice
since the estimation of the number of unknown dipoles in
dipole-fit methods is problematic.

II. THE EEG/MEG FORWARD MODEL

The fundamental equation governing the interaction of elec-
trical sources and the electrical field is the Poisson equation
in connection with a Neumann boundary condition

in

at (1)

Here, is the conductivity tensor and the open and bounded set
describes the geometry of the head.is the outward normal

at .
For the following discussion, we have to introduce the

so-called Sobolev spaces and . These are Hilbert spaces
of functions which are differentiable in a generalized sense
where the first derivatives are square integrable. The functions
of additionally have zero boundary values. For a formal
definition, see [11] or [12]. These Sobolev spaces are well
suited to modell current-densities. Pure dipoles do not belong
to these function spaces.

We define as the EEG measurement surface and
such that as the MEG mesurment surface.

The EEG forward model can be specified as follows:

(2)
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Here, is the weak solution operator of (1), is the trace
operator from to [12], [13].

We define

(3)

According to the Biot–Savart law the MEG-measurements are
modeled by

(4)

with and is the outward normalvector in. Thus, the
MEG forward model can be described as

(5)

Theorem 1: The operators

and

are compact and have nontrivial nullspaces.
Proof: The trace operator is compact for the given

spaces [13]. is compact, as the kernel in (3) is continuous,
and . The remaining operators in (2) and (5)
are continuous [13]. Thus, and are compact. As the
divergence operator has a nontrivial nullspace, the same is valid
for and .

Corollary 2: The problems

respectively,

and the combined problem

are ill posed.
Here, “ill posed” means that the involved operators are not

continously invertible which has the consequence that noise in
the data has strong effects on the reconstruction results.

III. T HE LEADFIELD MATRIX

To discretize the problem we represent the current inas a
sum of a fixed number of dipoles, located at pointsin

, and we use point collocation at the measurement points.
The set is calledinfluence space.

It is assumed that measurements are taken atpoints on
. The so-calledleadfield matrix contains

in the th column the data vector of size belonging to
a dipole with moment located at influence point .
Columns and contain data belonging to dipoles
with moments and , respectively. In detail,
if we define as the th unit-vector and as a dipole with
the moment located at point we get

If we now discretize by , we get

Thus, the product yields the data belonging to the dis-
retized current distribution.

In practice, and can be obtained from MRI pictures. The
columns of are then computed by the finite element
method according to [14]. For isotropic, the boundary ele-
ment method can be used too [15]. Analytical formulas are only
available for simplified geometries as, e.g., concentric ellipses
or spheres [16], [17].

IV. CONVENTIONAL CDR METHODS

As we already mentioned source reconstruction methods are
classified as dipole reconstruction methods and current recon-
struction methods. The first one tries to determinedipoles at
locations with moment and unknown such that this con-
figuration explains the measured data. This leads to a nonlinear
optimization problem. Current reconstruction methods (CDR
methods) try to determinefrom data . The problem
is a linear problem.

In practice, the number of influence pointsis much larger
than the number of measurements. Thus, the system
is underdetermined. Due to the ill posedness of the problem, the
matrix is ill conditioned. Thus, we need additionala priori
information to achieve a unique and stable solution. One possi-
bility is Tikhonov–Phillips regularization [14], [18], [19]

(6)

is called spatial model operator. Due to the large range of the
norms of the columns of one has to use a depth-weighting
matrix in order to get bias-free reconstructions (see [10]).

yields minimum norm least squares solu-
tions, is in this field of application the
so called LORETA method [21]. In the first case, one achieves
so called zero-order spatial smoothness, in the second case one
achieves second order spatial smoothness.is a discrete ver-
sion of the Laplace operator . For an implementation of ,
see [20]. Both cases lead to linear problems, due to 2.

This approach does not take temporal information into con-
sideration. Calculations only use one timeslice of data.

V. SPATIO-TEMPORAL CDR: THE SMOOTH ACTIVATION

MODEL

In this section, we assume the dataare given as a function
of time . Hence the solution of (1) is also a function of
time. Notice that the model is assumed to be stationary, i.e.,is
not a function of time. So we can apply the methods discussed
in Section IV for each time instance.

A coupling of different time instances is achieved by the
assumption that the electrical sources do behave temporally
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Fig. 1. Sketch of the simple problem.

Fig. 2. The activation curves of the dipoles.

smoothly. Hence we make the pysiologically motivated as-
sumption

(7)

Assume that the data are given for timeslices . The
current at time is termed as .

In order to achieve a temporal coupling according to (7), one
approximates

and we get an additional model term which extends the mini-
mization problem (6) in the following way:

(8)

This is the model of the spatio-temporal CDR method.

Fig. 3. Synthetic data.

Fig. 4. L-curve for the determination of�.

We introduce the so calledkronecker productby

...
...

Now (8) can be formulated as follows:

(9)

Here

...
...

...
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Fig. 5. Temporal reconstruction. Zeroth-order spatial smoothness and temporal coupling:� = 0.01,� = 0.2. No noise added to the data.

...
...

...

can be chosen as

or

Due to , (9) leads to the
regularized normal equation

(10)

The matrix at the left hand side is positive definite, so an effi-
cient way to solve the problem is the cg-algorithm. In practical
applications, the whole matrix on the left side of (10) is too big
to fit into memory (a typical size for is 64 10 ), but the
cg-algorithm only needs the evaluation of the multiplication of
the matrix above by an arbitrarily given vector. So one only has
to keep the matrices and in memory. Due to the size of

this solver is quite slow. A remarkable improvement can be
achieved in some special cases. We will discuss this in the Ap-
pendix.

VI. SIMULATIONS

A. The Simple Volume Conductor Model

For comparing the properties of the methods (6) and (9),
a simple volume conductor model was chosen: we consider
a three-dimensional (3-D) problem with a two-dimensional
(2-D) influence space. This setup is nearer to reality than a 2-D
problem with a one-dimensional influence space and allows
an easier comparision of reconstruction results than a real 3-D
influence space.

The simple model set up is made up of an influence space
consisting of a 10 10 grid with a length of ten arbitrary units
per side centered at . Nine sensors were placed in
a square planar array with center at above the grid.
See Fig. 1.

We use constant conductivityinside and outside the object.
Thus, the leadfield matrix is obtained by

Here, is the position of theth sensor, is the
position of the th gridpoint.
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Fig. 6. Temporal reconstruction. Zeroth-order spatial smoothness without temporal coupling,� = 0.01. No noise added to the data.

B. Inverse Calculations

Two equally oriented dipoles with moment at
3, 8 and both at 5 were placed on the ten by ten grid.
These dipoles are drawn in Fig. 1. A gaussian dipole-strength
time series was assigned to each dipole by

with peaks at timeslice 5 (dipole 1) and 9 (dipole 2) and a width
of 2.5. See Fig. 2.

The simulations were calculated for 16 timeslices. The syn-
thetic data are plotted in Fig. 3.

We used the timestep appendant to data with maximal ampli-
tude for the determination of the regularization parameterby
the -curve criterion for fixed error level ([22], [23]) applied to
(6) with 2. See Fig. 4.

For the solution of the normal (10), we used a cg-solver as
proposed above. One important point concerning the runtime of
such a solver is the choice of the initial value. We used the
solutions of the uncoupled (6). In a simulation run with a big in-
fluence space, we achieved a solution of (10) after 19 iterations
instead of 150 in the case of 0.

Figs. 5, 6, and 8–12, 16 show the contour-plots of .
The white squares in the contour-plots indicate the original
source-positions.

In Figs. 5 and 6, pure synthetic data were used to compare
temporaly coupled and temporaly uncoupled solutions. The

Fig. 7. Synthetic data with 30% noise added.

temporaly coupled solution seems to yield a little better spatial
accuracy.

In the further simulations, uniform noise with 30% of the
maximal signal amplitude was added to the data. See Fig. 7.

In Figs. 8 and 9, we compare temporaly coupled and non-
coupled LORETA-solutions. The coupled solutions are signif-
icantly less affected by noise. In the time range from timeslice
four to timeslice ten, the coupled solutions also reconstruct the
correct number of sources, whereas the noncoupled solutions
reconstruct only one source.
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Fig. 8. Temporal reconstruction. Second-order spatial smoothness (LORETA) and temporal coupling:� = 2.0,� = 1.5. Thirty percent noise added to the data.

Fig. 9. Temporal reconstruction. Second-order spatial smoothness (LORETA) without temporal coupling:� = 2.0. Thirty percent noise added to the data.
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Fig. 10. Temporal reconstruction. Zeroth-order spatial smoothness and temporal coupling:� = 2.0,� = 1.5. Thirty percent noise added to the data.

Fig. 11. Temporal reconstruction. Zeroth-order spatial smoothness and temporal coupling:� = 2.0,� = 15. This demonstrates the effect of a strong temporal
coupling. Thirty percent noise added to the data.
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Fig. 12. Temporal reconstruction. Zeroth-order spatial smoothness without temporal coupling:� = 2.0. Thirty percent noise added to the data.

Fig. 13. Activation curve of temporal reconstruction with temporal coupling.
� = 2.0,� = 1.5. Thirty percent noise added to the data.

In Figs. 10–12, we see temporaly coupled and noncoupled
zeroth-order smoothness solutions. In Fig. 11, we used15
in order to demonstrate the effects of a strong temporal cou-
pling. Again the temporaly coupled solution in Fig. 10 is less
affected by noise than the uncoupled solution in Fig. 12. Due
to the second-order smoothness, the results in Fig. 8 are a bit
smoother than the results in Fig. 10.

In Figs. 13 and 14, we draw the activation curves of tempo-
raly coupled and uncoupled solutions. For these plots, we used

Fig. 14. Activation curve of temporal reconstruction without temporal
coupling.� = 2.0. Thirty percent noise added to the data.

the activity at the local maxima of the contour plots above. As
wecan see, the coupled solution gives a deeper insight into the
time dynamics of the sources.

At last we used another method for temporal reconstructions:
we smoothed the data with a Savitzky–Golay filter (also called
“least squares filter”) of order three and length five (see [24]
and [25]). In Fig. 15, we see the smoothed data. Then we used
these data to get a temporaly uncoupled solution. The results in
Fig.16 are better than in the unsmoothed case but not as good as
the results obtained by temporal coupling.
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Fig. 15. Noisy data smoothed with a Savitzky–Golay filter.

For a systematic comparison of coupled and noncoupled so-
lutions, we introduced two measures for the accuracy of the so-
lutions.

• We compared the distance of the exact locations with the
local maxima of the reconstructions. The dependency of
this measure on the noise level is depicted in Fig. 17.

• We calculated the correlation of the true activation curve
and the activation curves calculated from reconstructions.
In Fig. 18, we see the dependency on the noise level.

VII. SUMMARY

It could be shown in simulations, that the introduction of tem-
poral constraints to existing CDRs leads to significant improve-
ments in spatial and temporal accuracy. This general advantage
of spatio-temporal CDR was shown to be most prominent in the
case of noisy data, but also in the ability to seperate sources.

APPENDIX

In the following, we will consider two minimization problems
which allow a very fast and efficient solution. These problems
approximate problem (9).

• We introduce the first problem by ommitting the
weighting matrix in problem (9). This is warrantable
if we know a priori that the distance of the considered
influence space to the sensors varies only little. For
example, if we search sources on a part of the cortex
which is nearly planar and parallel to the sensors. In this
case, the minimization problem is

(11)

• The second problem introduces depth-weighting in the
temporal term

(12)

Here, . If we change our variables by
we get

(13)
Here, we introduced the depth-weighting of the temporal
term because of technical reasons: it makes the transfor-
mation above feasible. So we get a minimization problem
with the same model-terms as in the first problem (11)
above.

The question whether the solutions of these problems are
useful has to be decided by practical experiments. At least these
solutions should serve as good starting points for the cg-solu-
tion of problem (10).

For further calculations, we give the following properties of
the kronecker product; see [26]

For the sake of simplicity, we show how to solve the first
problem given above. In order to tackle the second problem,
we will have to replace by in the
following calculations. We set as the number of sensors.

Analogical to (10) the solution of (11) is given by

(14)

Due to the size of the solution of problem (14) is
quite expensive. We will see below that we can get a solution
by solving a matrix equation involving instead, which
only has size and, thus, is much smaller.

Lemma 3: The solution of problem (11) can be achieved by
solving

(15)

and setting

Proof: First we see

We get

by multiplying both sides with the terms in brackets. If we now
consider the normal-equation (14) the prove is complete.
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Fig. 16. Temporal reconstruction: zeroth-order spatial smoothness without temporal coupling. Data smoothed with Savitzky–Golay filter.� = 2.0. Thirty
percent noise added to the data.

Fig. 17. Spatial accuracy of temporal coupled and noncoupled reconstruc-
tions.

Further speedup can be achieved if we consider the Lemma
below. We introduce the following notion: If is a vector of
size we get as a matrix of size by arranging
the elements columnwise. We will use this transformation for

below.
Lemma 4: The solution of is equivalent to

solving .
Proof: See [26].

Fig. 18. Temporal accuracy of temporal coupled and noncoupled reconstruc-
tions.

Thus, (15) leads to

(16)

with respect to .
This equation of type is called“continous

time” sylvester equation. It can be solved very fast by methods
introduced in [27].
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In some experiments with big influence spaces, the method
described above is faster than the direct solution of (14) by a
factor of 100.

The calculations above are not feasible if a matrix is
present in the spatial model term as in problem (9).

This approach has to be further studied.
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