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Abstract—In this paper we present techniques for deriving
inversion algorithms in 3D computer tomography. To this end we
introduce the mathematical model and apply a general strategy,
the so-called approximate inverse, for deriving both exact and
numerical inversion formulas. Using further approximations, we
derive a 2D shift-invariant filter for circular-orbit cone-beam
imaging. Results from real data are presented.

Index Terms—X-ray tomography, cone-beam CT, inverse prob-
lems, mollifier, reconstruction kernel

I. I

The circular scanning geometry presently is the most widely
used scanning modality in non-destructive 3D X-ray CT. The
well known Feldkamp algorithm is still often used, despite its
drawbacks in the case of large cone angles. In this paper we
derive fast inversion algorithms, using a strategy which can
be applied to almost arbitrary scanning geometries. It is based
on the approximate inverse, where reconstruction kernels are
pre-computed independently of the data.

In the first section we summarize results from the approx-
imate inverse, then we describe the relation between X-ray
and Radon transform, the formula of Grangeat. We apply both
ingredients to derive firstly an exact inversion formula. This
is then used to calculate, based on user prescribed mollifiers,
the reconstruction kernel with given smoothing properties for
damping the influence of the unavoidable measurement errors.
In the derivation of the inversion algorithm, the formula of
Grangeat is used. The algorithm itself is completely different
from Grangeat’s algorithm, the numerically critical operations
are not performed on the detector, but on the mollifier. Also,
there is no rebinning of the data needed. In the following we
derive analytical formulas for the evaluation of these kernels
for the circular scanning geometry.

In the last section we present images of the reconstruction
kernel and of reconstructions from real data.

II. A I

The integral operators appearing in most tomographic prob-
lems are compact operators acting on suitable Hilbert spaces
with infinite dimensional ranges. Hence, their inverse operators
are not continuous, which means that data errors are amplified
in the solution. So we concentrate on finding approximate
inversion formulas, that allow for a compromise between
best possible accuracy and necessary damping of data errors
appearing in any real measurement.
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For approximating the solution of

A f = g,

with an operator A : X → Y acting on suitable Hilbert spaces,
we apply the method of approximate inverse, see [1]. The basic
idea is as follows: we choose a mollifier eγ(x, y), which, for a
fixed reconstruction point x, is a function of the variable y and
as such approximates the delta distribution for the point x. The
parameter γ acts as regularization parameter, i.e. eγ(x, y) →
δx(y) for γ → 0.

For a fixed reconstruction point x, we solve the auxiliary
problem

A∗ψγ(x, ·) = eγ(x, ·), (1)

where eγ(x, ·) is our chosen approximation of δx(·) and A∗

denotes the adjoint of A. The searched-for function ψγ(x, ·) is
the reconstruction kernel. For the approximate solution fγ we
then get

fγ(x) =
〈

f , eγ(x, .)
〉

X
=

〈
f , A∗ψγ(x, ·)

〉
X

=
〈
A f , ψγ(x, ·)

〉
Y

=
〈
g, ψγ(x, ·)

〉
Y

=: S γg(x),

where the operator S γ is called the approximate inverse.
At first glance, this does not look like an improvement, since

we have to solve an equation for the adjoint of our original
operator A. But this problem can be solved independently of
the data, i.e. well in advance. Furthermore, invariances and
symmetries of the operator A∗ can directly be transformed
into corresponding properties of S γ, see [1] and section V-A.

This method is presented in [2] as a general regularization
scheme to solve inverse problems. Generalizations are also
given. The application to vector fields was derived by Schuster
[3]. If the auxiliary problem is not solvable then its minimum
norm solution leads to the minimum norm solution of the
original problem.

III. I F   3D C B T

In the following we consider the X-ray reconstruction
problem in three dimensions when the data are measured
by firing an X-ray tube emitting rays to a 2D detector. The
movement of the combination source – detector determines the
different scanning geometries. In many real-world applications
the source is moved on a circle around the object. From a
mathematical point of view this has the disadvantage that
the data are incomplete, the condition of Tuy-Kirillov is not
fulfilled. We base our considerations on the assumption that
this condition is satisfied, the reconstruction from real data
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nevertheless is then from the above described circular scanning
geometry, because other data are not available to us so far.

A first theoretical presentation of the reconstruction kernel
was given by Finch [4]. The use of invariance properties was
a first step towards practical implementations, see [5]. See
also the often used algorithm of Feldkamp et al. [6] and the
contribution of Defrise and Clack [7]. A unified approach to
those papers is contained in [8]. The approach of Katsevich
[9] differs from ours in that he avoids the Crofton symbol by
restricting the back projection to a range dependent on the
reconstruction point x.

A. Mathematical model

We denote with a ∈ Γ the source position, where Γ ⊂ R3

is a curve, and θ ∈ S 2 is the direction of the ray. Then the
cone-beam transform of a function f ∈ L2(R) is defined as

D f (a, θ) =

∫ ∞

0
f (a + tθ) dt. (2)

The adjoint operator as mapping from L2(R3)→ L2(Γ×S 2) is
given as

D∗g(x) =

∫
Γ

‖x − a‖−2 g
(
a,

x − a
‖x − a‖

)
da. (3)

Most attempts to find inversion formulae are based on the
Formula of Grangeat, first published in Grangeat’s PhD thesis
[10], see also [11]:

∂

∂s
R f (ω, s)

∣∣∣∣∣
s=〈a,ω〉

= −

∫
S 2

D f (a, θ)δ′(〈θ, ω〉) dθ. (4)

Our starting point is now the inversion formula for the 3D
Radon transform

f (x) = −
1

8π2

∫
S 2

∂2

∂s2 R f (ω, s)

∣∣∣∣∣∣
s=〈x,ω〉

dω, (5)

that we rewrite as

f (x) =
1

8π2

∫
S 2

∫
R

∂

∂s
R f (ω, s)δ′(s − 〈x, ω〉) ds dω. (6)

We assume in the following that the TuyKirillov condition is
fulfilled. Then we can change the variables as follows: By
n(ω, s) we denote the Crofton symbol, i.e. the number of
source points a ∈ Γ such that 〈a, ω〉 = s:

n(ω, s) = #{a ∈ Γ : 〈a, ω〉 = s}.

Setting m = 1/n, we get

f (x) =
1

8π2

∫
S 2

∫
Γ

(R f )′(ω, 〈a, ω〉) δ′(〈a − x, ω〉)

× |〈ȧ, ω〉|m(ω, 〈a, ω〉) da dω

= −
1

8π2

∫
S 2

∫
Γ

∫
S 2

D f (a, θ) δ′(〈θ, ω〉) dθ

× δ′(〈a − x, ω〉) |〈ȧ, ω〉|m(ω, 〈a, ω〉) da dω

= +
1

8π2

∫
Γ

1
‖x − a‖2

∫
S 2

∫
S 2

D f (a, θ) δ′(〈θ, ω〉) dθ

× δ′(
〈

x − a
‖x − a‖

, ω

〉
) |〈ȧ, ω〉| m(ω, 〈a, ω〉) da dω

where we used that δ′ is homogeneous of degree −2 and that
δ′(−s) = −δ′(s). We now introduce the operator

T1g(ω) =

∫
S 2

g(θ) δ′(〈θ, ω〉) dθ, (7)

acting on the second variable of a function g(a, ω) as

T1,ag(ω) = T1g(a, ω),

and the multiplication operator

MΓ h(a, θ) = |〈ȧ, ω〉| m(ω, 〈a, ω〉) h(ω) (8)

and state the following result, see also [12].
Theorem 3.1: Let the condition of Tuy-Kirillov be fulfilled.

Then the inversion formula for the cone beam transform is
given as

f =
1

8π2 D∗T1MΓT1D f

with the adjoint operator D∗ of the cone beam transform and
T1 and MΓ as defined above.

Note that both D∗ and MΓ depend on the scanning curve
Γ, whereas T1 only depends on the specific point a of the
scanning curve.

The above theorem allows for computing reconstruction
kernels. To this end we have to solve the equation

D∗ψγ = eγ,

in order to write the solution of D f = g as

f (x) =
〈
g, ψγ(x, ·)

〉
Y
.

In the case of exact inversion, eγ is the delta distribution,
in the case of an approximate inversion formula, it is an
approximation of this distribution. From the above we see that

D−1 =
1

8π2 D∗T1MΓT1

and we can write

D∗ψγ = eγ =
1

8π2 D∗T1MΓT1Deγ,

hence

ψγ =
1

8π2 T1MΓT1Deγ. (9)

IV. C   

In the following, we will use (9) to derive an analytic
formula for the reconstruction kernel in 3D. We use the
gaussian

eγ(x, y) = (2π)−3/2 1
γ3 e−

‖x−y‖2

2γ2 (10)

as mollifier (which we write as ex(y)) and get

T1Deγ(a, ω, x) =
(2π)−1/2

γ3 e−
1

2γ2 〈a−x,ω〉2
〈a − x, ω〉 . (11)

Proof: Following [13, p. 69], we have∫
S 2

[D f ](a, θ)δ′(〈θ, ω〉) dθ = −

∫
ω⊥
〈[∇ f ](〈a, ω〉ω + y), ω〉 dy.
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For the gaussian, this means

[T1Dex](a, ω) = −

∫
ω⊥+a

〈
[∇yex](y), ω

〉
dy

=
1
γ2

〈∫
ω⊥+a

e(‖y − x‖)(y − x) dy, ω
〉

=
(2π)−3/2

γ5

∫
ω⊥

exp(−
1

2γ2 ‖y + z‖2)(y + z) dy.

We introduce a rotated coordinate system, such that ω is one
of the directions. As we only integrate over ω⊥, the integral
reduces to an integration over R2 and yields the mentioned
result.

For the multiplication operator MΓ, we need the inverse
of the Crofton symbol, m. For the specific case of a circular
scanning geometry, we set n = 2 and hence m = 1/2. Applying
the operator T1 to the function in (11) yields the following
result.

Theorem 4.1: Let the scanning curve Γ be a circle with
radius R and the density function f fulfils supp f ⊂ r·S 2, r < R.
If the direction vector θ ∈ S 2 does not lie parallel to the vector
x − a, the reconstruction kernel ψ can be written as

ψγ(a, θ, x) = −
C
2π

[ p3

p4

{
〈ȧ, θ〉 − 2α 〈a − x, θ〉 p3

}
×

∫ 1

0
ep1[p2t2−1] dt + p4 〈a − x, θ〉 ep1[p2−1]

]
,

(12)

where

α B
1

2γ2 , C B (2π)−3/2 1
γ3

p1 B α ‖a − x − 〈a − x, θ〉 θ‖2

p2 B
〈a − x − 〈a − x, θ〉 θ, ȧ − 〈ȧ, θ〉 θ〉2

‖ȧ − 〈ȧ, θ〉 θ‖2 ‖a − x − 〈a − x, θ〉 θ‖2

p3 B 〈a − x − 〈a − x, θ〉 θ, ȧ − 〈ȧ, θ〉 θ〉

p4 B ‖ȧ − 〈ȧ, θ〉 θ‖ .

If θ lies parallel to x − a, then the kernel can be calculated as

ψγ(a, θ, x) = −
C
2π
‖ȧ − 〈ȧ, θ〉 θ‖2 〈a − x, θ〉 . (13)

Theorem 4.1 provides a means for fast computations of
reconstruction kernels, eliminating the need for pre-computed
kernels. Figure 1 shows the shape of such a kernel. The
calculation of this kernel took approximately 6.6 seconds on
a x86 desktop system with a 3 GHz CPU, the discrete kernel
has 5132 elements.

Remark 4.2: The circle used in theorem 4.1 does not fulfil
the Tuy-Kirillov condition, hence the theorem only provides an
approximative solution. With respect to the 3D Radon trans-
form, this leads to hollow projections. In the 2D case, unique-
ness is preserved, in 3D this is subject of future research.
With respect to the long object problem, one additionally
faces truncated projections which means that other scanning
geometries, like helices are to be preferred.

Fig. 1. 3D Plot of a kernel for 513x513 detector points, with γ = 0.00165.

V. I

A. Invariances

As mentioned, using the approximate inverse (AI), invari-
ances of the operator can be used to shorten the calculation
of the reconstruction kernel. Using our explicit formula for ψ,
we easily see the following:

1) The reconstruction kernel depends only via a − x on x,
i.e. only the relative vector between a and x is important.

2) For the point x = 0, we have

ψγ(Va, θ, x = 0) = ψγ(a,VTθ, x = 0)

for every rotation matrix V .
The second invariance is only true for the point x = 0. A first

step towards a fast and easy computation of a reconstruction
kernel was taken by Dietz in his PhD thesis, see [13]. But
whereas he used a reconstruction kernel for the 3D Radon
transform and subsequently calculated a numerical kernel for
the ray transform, we use equation (9) to derive an analytical
formula for the reconstruction for the X-ray transform. Using
this formula, we can overcome the need for a pre-computed
kernel, which gives us more flexibility.

For the approximate invariance, we define Ux
T to be the

rotation matrix that rotates a−x
‖a−x‖ onto a/R, i.e.

Ux
T a − x
‖a − x‖

=
a
R
.

For real world measurement setups, Ux will be so ”close” to
the identity matrix that we can then assume Uxȧ = ȧ. The
reason for that is that the radius of the sphere in which we
reconstruct is (much) smaller than the radius of the source
curve. Then, instead of calculating the reconstruction kernel
for different values of x, we calculate it only for x = 0 and
scale it by a factor of R2

‖a−x‖2
, see [13]

ψ(a, θ, x) ≈
R2

‖a − x‖
ψ(a,Ux

Tθ, x = 0).
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(a) Reconstruction at height
z = −0.22.

(b) Reconstruction at height
z = −0.28.

Measurement parameters

Detector array 1024 × 1024
Projections 800
Source – Detector ∼ 126 cm
Source – Object ∼ 5.1 cm

Reconstruction parameters
Reconstruction grid 1000 × 1000

γ 0.00165 cm

(c) Parameters (d) Original bust

Fig. 2. Reconstruction of a bust

Tying these invariances together, we see that we only need to
compute the kernel once for one value of a and the different
ray directions θ. The different reconstruction points x are taken
into account by the simple scaling factor above.

B. Computational complexity

With the invariances detailed in subsection V-A we can
implement the approximate inverse with the very same com-
plexity as the FDK algorithm:

1) Generate the filter matrix and calculate its Fourier trans-
form (once!).

2) For each source point a
a) Calculate the Fourier transform of the data matrix

(that is, the matrix with the measured data).
b) Multiply both matrices element-wise and calculate

the inverse Fourier transform of the resulting ma-
trix.

3) Use these matrices for the back projection.
The only different part is the computation of the kernel 3D-
matrix. As mentioned after theorem 4.1, the kernel compu-
tation takes only a few seconds, so this part is negligible.
Thus, the two algorithms are on par with respect to their
computational requirements.

In the following section, we present reconstructions from
real data, kindly provided by Fraunhofer IzfP, Saarbrücken.

VI. R   

In figure 2, we reconstructed a bust, showing Joseph von
Fraunhofer. One can clearly see that there are air locks inside
the bust. Also, the algorithm gives a smooth reconstruction of
the interior area.

We compared our algorithm with the well-known Feldkamp-
algorithm, using a Shepp filter. The results in figure 3 show
that especially near the boundary of the reconstruction area,

(a) Approximate Inverse (b) Feldkamp with RamLak fil-
ter

Fig. 3. Comparing the reconstruction with the Feldkamp algorithm. The
black circle marks the reconstruction area. Parameters are the same as in
figure 2.

our algorithm gives a better impression of the rather homoge-
neous material.

In figure 5, we reconstructed an artificial real test object,
consisting of layers of aluminium and adhesive. This test
object is used to test algorithms for their resolution in the
z-direction.

For the Shepp filter, one needs the essential bandwidth Ω

of the function f in order to choose the step size between
different detector points according to the Nyquist rate, see
[14]. Obviously, we do not know the function’s essential
bandwidth and (even if we knew it) we cannot change the
physical detector layout. So we assume the function to have the
bandwidth Ωess = π

h , where h is the step size on the detector.
As can be seen in figure 4(a), this leads to a very poor

reconstruction. In figures 4(b) and 4(c), we therefore used
a Shepp filter with a bandwidth of Ω = π

5h and Ω = π
10h ,

respectively. This yields results with an acceptable noise level.

A reconstruction with our proposed method is shown in
figure 5. There’s no further smoothing necessary, the regular-
ization parameter γ is taking care of that for us.

We can clearly distinguish the disruptions over the whole
object, which shows that – despite the circular scanning curve
– the reconstruction in z-direction is very good. The vertical
artefact right from the middle is known to come from the
physical detector setup used for the measurement.

Choosing a smaller bandwidth as explained above for the
Shepp filter yields a worse resolution, which can be seen in
the magnification of the lower right corner in figure 6(b).
This shows that the Feldkamp reconstruction with the smallest
bandwidth looks good in the large picture, but it’s actually
blurry. The Feldkamp reconstruction with a bandwidth of
Ωess/5 conserves the edges much better. The approximate
inverse gives a comparable result with less noise.

In order to better understand the quality issues, we have
plotted cross sections of the reconstructions in figures 7 and
8. The intersections are taken at the white lines shown in figure
4(a).

For the horizontal intersection in figure 7, we see that
at the end of the aluminium block (around pixel 300), the
AI reconstruction goes down almost vertically, indicating the
sharp edge of the metal block. The FDK reconstruction has
a lesser slope, leading to a blurry edge. Additionally, there’s
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(a) Bandwidth Ωess according to the Nyquist rate.

(b) Bandwidth Ωess/5.

(c) Bandwidth Ωess/10.

Fig. 4. Reconstruction of an artificial test object, consisting of layers of
aluminium and adhesive. The images show a reconstruction at x = 0.0 with
the Feldkamp algorithm using a Shepp filter with different bandwidths. The
default bandwidth according to the Nyquist rate leads to a grainy resolution.
The horizontal and vertical lines in the first image indicate where we draw
the cross section in figure 7 and figure 8, respectively.

Measurement parameters

Detector array 1024 × 1024
Projections 400
Source – Detector ∼ 126 cm
Source – Object ∼ 2.9 cm

Reconstruction parameters
Reconstruction grid 3000 × 3000

γ 0.00062 cm

(a) Parameters

(b) Approximate inverse.

Fig. 5. Reconstruction of the the aluminium layers with our proposed
method. Noise level is lower than even with the best of the three Feldkamp
reconstructions, whereas resolution is at least at par. The parameters for the
reconstruction can be found in table 5(a)

(a) Bandwidth Ωess/5. (b) Bandwidth Ωess/10. (c) γ = 0.00062cm.

Fig. 6. Magnification of the lower right corner. The left and middle
picture show the FDK algorithm with the mentioned bandwidth, the right
picture shows the reconstruction with the AI. The resolution of the Feldkamp
reconstruction becomes too bad if we choose the bandwidth too low.

some noise at the edge (around pixel 330), again showing
that the FDK reconstruction has a lower resolution. The outer
foil (starting at about pixel 370) also is smaller in the AI
reconstruction.

With respect to the vertical intersection in figure 8, we see
that at around pixel 80, the AI reconstruction separates the two
foils clearly, whereas the FDK reconstruction has an artefact
there. Generally, the AI reconstuction tends to show the sharp
edges of the different layers better.
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(a) Feldkamp

(b) Approximate Inverse

Fig. 7. Horizontal cross section of the reconstructions with a bandwidth of
Ωess/5 and a value of γ = 0.00062cm, respectively. The plot shows only the
right part of the intersection for clarity.

VII. C

We have presented an exact inversion formula and derived
a suitable numerical inversion formula from it for the circular
scanning geometry. The numerical implementation is fast
enough to no longer rely on a pre-computed kernel. Instead,
the kernel can be computed as part of the measurement. As
such, our method has the same numerical complexity as the
Feldkamp algorithm. However, the approximate inverse has
both a better resolution and a lower noise level.

In the future, we want to apply this approach also to helical
scanning geometries, since scanning times become more and
more important in all real applications, e.g. in non-destructive
testing and especially in medical diagnostics.
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