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Abstract. In this article we investigate and prove relationships between metric andn&regro-
jections induced by powers of the norm of a Banach space. We corfgiggman projections onto
affine subspaces of Banach spaces and deduce some interestogiesnia@ results which are well
known for Hilbert spaces. Using these concepts as well as ideas &questial subspace optimiza-
tion techniques we construct efficient iterative methods to compute Bregnojections onto affine
subspaces that are connected to linear, bounded operators betarsmhBpaces. Especially these
methods can be used to compute minimum-norm solutions of linear operptations or best ap-
proximations in the range of a linear operator. Numerical experimentsiilatathe performance
of our iterative algorithms and demonstrate a significant acceleratioparewh to the Landweber
method.
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1. Introduction

Projections onto affine subspaces are an important ingredient to swisgained opti-
mization methods or to develop efficient iterative solvers for linear dpeeguations.
The classical method of conjugate gradients, where one computestjmogeonto an
affine Krylov subspace, can be seen as a typical example for sutdrative solution
scheme. Consider a continuous linear operdtorX — Y between Banach spac&s
andY. We are interested in computing projections onto affine subspaces @irthe f

z+N(A) and z+R(A),

whereN (A) is the nullspace an® (A) is the closure of the range df. These projec-
tions are essential if one wants to iteratively approximate the minimum-naitrticn
zt of

Az =y.
In [20] we suggested to approximaté by means of a nonlinear Landweber method
Tpp1 = Jy (Jp(xn) — pn A% (Azy, — y)) n=0,1,..., z0=0.

HereJ,, J;, J, are duality mappings of the corresponding Banach spaces. The step
sizeu,, must be properly chosen in order to achieve convergence. We afaiina [20]
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for an exhaustive convergence and stability analysis of the methoduAd lsave been
expected from results in Hilbert spaces the method showed good riegtitar prop-
erties but the convergence is tremendously slow. Hence the idea caimeisg more
search directions; rather than only using the single directiof) = A*J,.(Az,, — v)
in order to get a faster iterative scheme. Following ideas of the well-kii@@method
we compute a projection onto an affine subspagef R(A*) in each iteration step.
An appropriate choice df* accelerates the convergence significantly.

As projections we use metric and Bregman projections which are tightlyecbed by
the important relation

Po(z) —z=N%__(0) foral zeX.

HereC is a closed, convex subset &f, P means the metric projection ont® and
nZ,_, the Bregman projection ont® — z. Thus Bregman projections can be used to
compute metric projections.
The aim of this article is twofold. On the one hand we illuminate the connections
between Bregman and metric projections. We show known results andelegw
relations. Moreover we demonstrate how metric and Bregman projeciorise com-
puted numerically. On the other hand we expand ideas from sequeriiglae opti-
mization techniques to accelerate the convergence of our iterative tatiopofzt.
Sequential subspace optimization methods (SESOP) were consideftedryyss,
ZIBULEVSKY [16] and E.AD ET. AL. [11] to solve large-scale unconstrained opti-
mization problems ifR™. Details about affine subspaces applied in conjugate gradient
methods are contained in the article [22] afc&R, YUAN. A concise overview about
numerical optimization is given in the book [18] ofd¢EDAL, WRIGHT. Compared
to the optimization techniques outlined in these references our subsp#uoedsex-
tend to arbitrary, but smooth Banach spaces which do not need to hi®elimension.
There is a prospective need for efficient solvers of operator equsatidBanach spaces,
since a Banach space setting sometimes allows a more realistic modellirgpteps
arising in applications from industry and natural sciences. Hence, titerds of the
paper are interesting not only from a theoretical point of view but alsodiddaeal
world problems. Moreover we point out that it is important to considebj@ms even
in infinite dimensional spaces, since a discretization always veils the raftarein-
verse problem. By doing so we follow arguments which alswBLHARD [9] used to
construct solvers for nonlinear problems.
We give a brief summary of the paper’s subjects. In sections 2 anddiwsea short
survey of duality mappings, metric projections and Bregman projectiahsced by
powers of the norm. Such Bregman projections are also cgdiedralized projections
see ABER [2]. We characterize Bregman projections onto closed affine subspac
and prove new relations between Bregman and metric projections §tiops 3.6,
3.7, 3.8, and 3.10). Our investigations lead to an extension of thethgestablished
decomposition theorems inBER [3], SONG, CAO [21] to the affine case. More
precisely, we show

X=UaJi(z*+U"),
whereU C X is a closed subspace of a reflexive, smooth and strictly convex Banach
spaceX. The second part of the article starts with section 4 and consists of the de-
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velopment of sequential subspace optimization methods in Banachsdpdowed by
some convergence results (propositions 4.1 and 4.2). The perficarand advantages
of the method are finally demonstrated in section 5.

2. Duality Mappings

We recall the definition of duality mappings and some of their propertiesf athich
can be found in the book ofiGRANESCU[8]. Throughout the papexX is a real Banach
space with nornj.|| and dualX* and we write(z*|z) = z*(z) for the application of
x* € X* onz € X. Moreover we always assumeq € (1,00) to be conjugate such
that + 2 = 1.

Definition 2.1. The mapping/, : X — 2%~ defined by
Jp(w) = {a* € X*| (2*[a) = ||=||", |a*|| = [l«|~*} (2.1)
is theduality mappingof X with gauge functiont — t?—1.

Jz is also called theormalizedduality mapping. ByJ; we denote a duality map-
ping of the dualX*. In general duality mappings are set-valued and by the Hahn-
Banach theorem the sefs(x) are not empty for alk € X. By checking (2.1) we see
that the following mappings are indeed duality mappings.

Example 2.2.
(a) In aHilbert space the normalized duality mapping is just the identity mgppin
(b) Forp € (1, 00) we have

Tp(@)(t) = |z (t)["~* sign(a(t))

in L,-function spaces and

(Jp(:c))n = |z, [P~ sign(z,)

in l,-sequence spaces, where sign:= % for 0 # = € R and sigri0) := 0.

BEY
(c) A single-valued selection of the normalized duality mappingd®&#, ||.||«) IS
given by
(0,...,0,2%,0,...,0) € Jo(z),

wherek is any index such thak| = ||z -
(d) In(R™,|.|]1) we may take

(llzllasign(za), ..., [|z]l1sign(zn)) € Ja(x) .
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The duality mapping/, is homogenousf degreep — 1, i.e.
Jy(Az) = (AP tsign(\)J,(z) forall =€ X, \eR, (2.2)

and duality mappings with different gauges € (1, co) differ only by a (non-constant)
factor

Jr(z) = [|l2|"7PJp(x) . (2.3)

In fact duality mappings are subdifferentials of convex functions.mefion f : X —
R is said to besubdifferentiableat a pointz € X, if there exists an* € X*, called
subgradienof f atz, such that

fly)— f(z) > (" |ly—z) forall yeX. (2.4)

By 0f(z) we denote the set of all subgradientsfcdt > and the mapping@f : X —
2% is called thesubdifferentiabof f. Now let f, : X — R be the function

, 1
folx) = plelr . weX.

Then by the theorem of Asplund, see e.qg. [8], we have
Jp = 0f,.
As a consequence every duality mappifgs monotonei.e.
(" —y"|lz—y) >0 forall z,yeX,z*eJy(zx),y" € p(y).

In the following proposition smoothness and convexity of a Banach sgaaee
characterized by properties of the functigiisandJ, = 9f,,.

Proposition 2.3.

(a) X is strictly convex ifff, is strictly convex ifJ, is strictly monotonei.e.
(" —y*le—y)>0 forall z#yeX,a"ey(x),y €Jy(y).

(b) X is smooth ifff, is Gateaux differentiable ifff,, is single-valued. In this case we
haved f,(x) = f(x) = J,(x).

(c) X is uniformly convex ifff, is uniformly convex.

(d) X is uniformly smooth iff, is uniformly Frechet differentiable on the unit sphere
iff J,, is single-valued and uniformly continuous on bounded sets.

(e) X is reflexive, strictly convex and smooth.jff is bijective. And in this case we
have(.J,) ™ = J;.

() If X is reflexive and smooth theh, is norm-to-weak-continuous, i.e. sequences
converging in norm are mapped to weakly convergent sequences.
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Uniform smoothness implies reflexivity and smoothness, uniform catyvienplies
reflexivity and strict convexity, and in finite dimensions the converseshakiwell.
Moreover smoothness and convexity are dual concepts, i.e. a BapaceX is
uniformly smooth (uniformly convex) iff its duak™ is uniformly convex (uniformly
smooth) and in cas# is reflexive we also hav& is smooth (strictly convex) ifX* is
strictly convex (smooth).

It is known thatL,-, [,-spaces witlp € (1, 00) are uniformly smooth and uniformly
convex wherea&,, I; and L., I, are neither smooth nor strictly convex.

We will show the convergence of the sequential subspace methodsdesspéth a
g-smooth dual X is said to be;-smoothif there exists a constat > 0 such that

px(r) <Cr? forall 7e[0,00),

where the functiopy : [0, 00) — [0, 00) is themodulus of smoothnes$ X, defined
by
1
px(r) = ssup{llz +yl + llz -yl =2t ll=f = 1, flyll <7}

A Banach spac« is said to be uniformly smooth iff

jim 20 _ ¢
T—0 T

Henceg-smooth spaces are especially uniformly smooth (recall¢tatl, ~)). Itis
well known thatZ,,-, [,,-spaces with k p < 2 arep-smooth with

1
7)< =7P
px()_p

andZL,-, l,-spaces withy > 2 are 2-smooth with

px(r) < B2 272,

For more information about geometry of Banach spaces we refeidrANESCU[8],
DIESTEL[10], FIGIEL [12], LINDENSTRAUSSand TZAFRIRI [14]. The following in-
equality can be found in X and RoAcH [23]. It plays a central role in our convergence
proofs.

Proposition 2.4([23]). Let X be g-smooth. Then there exists a constant- 0 such
thatforallz,y € X

1 1 C
glll‘—yllq < glll‘Hq— <Jq(x)\y>+glly\\q- (2.5)

3. Metric and Bregman Projections

We are concerned with two different kind of projections: Metric projectiand Breg-
man projections. The latter ones arise by minimizing a Bregman distanceeicdby
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powers of the norm, which are also callgeneralized projectionsy ALBER [2]. We
recall some known facts and extend the existing theory by some fudhériltions.
Throughout this sectioX is supposed to be reflexive, smooth and strictly convex and
C +# ) be a closed convex subset®f Recall that ifX is reflexive, smooth and strictly
convex, then this is valid for the dual*, too.

Definition 3.1. Themetric projectionof z € X ontoC is the unique elemeri: (z) €
C such that
|z = Pe ()| = min|lz —y]|. (3.1)
yel

Obviously we haveP(z) = z < = € C and thusP2 = Po andR(Pc) = C,
where byR we denote the range of a mapping. The metric projection can also be
characterized by a variational inequality.

Proposition 3.2. Let J, be any duality mapping ok. Then an elemerit € C is the
metric projection ofr ontoC iff

(Jp(Z—2z)|y—2)>0 foral yecC. (3.2)

The proof is done as in the case of the normalized duality mapping, whith ca
be found in LONs [15], see also PNOT, RATSIMAHALO [19] for a more general
treatment of metric projections.

Bregman projections are defined as minimizers of Bregman distandeb gt back
to BREGMAN [6].
For a Giteaux differentiable convex functigh: X — R the function

Dp(x,y) = fly) — flx) = (f(@)|ly—=z) , zyeX (3.3)

is called theBregman distancef x to y with respect to the functiofi. Here we consider
Bregman distances with respect to the functigns) = %H:c”? with f, = J,. In this
case (3.3) can be written as

1 1
By(z,y) = g\lxll” = (Jp(2) ly) + Z;Ilyllp- (3.4)
In Hilbert spaces we get
1
Do(z,y) = é“m —yl?.

Let us writeA; for the Bregman distance in the dusl” with respect to the function
fr(z*) = 2llz*[|*. Thenitis easy to see that

Ap(x,y) = A; (Jp(y), Jp(x)) .

In the next proposition we collect some propertiedpf We only prove (e), because it
is new and we will need it in our convergence proof.

Proposition 3.3. For all z,y € X and sequence:, ), in X the following holds:
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(@ Ay(z,y) >0andp,(z,y) =0z =y.

(b) Ay (—z,—y) =D, (z,y) andA,(Az, \y) = N\PA,(z,y) forall A > 0.

©) 1limg, =0 Bp(zn,z) = o0, i.e. the sequencer, ), remains bounded if the se-
quence(l, (zn,x))  is bounded.

(d) A, is continuous in both arguments. It is strictly convex, weakly lower semi-
continuous and @teaux differentiable with respect to the second variable with
a%,Ap(xvy) = Jp(y) — Jp().

(e) LetX be uniformly convex. Ifz,), converges weakly to and the sequence
(Bp(y,xn))  converges tdy,(y, =) then(z,),, converges strongly to.

Proof. [of (e)] The left hand side of

1 1
Dp(y,zn) = Bp(y, x) + (Jp(y) [ 2n — z) = Sllzall” = Zll2l®

converges to zero and therefore so does the right hand side. Hensedbence of
the norms(||z,,||)  converges tdz|. Together with the weak convergence(of,),, to

x this implies the strong convergence(af,),, to = in a uniformly convex space, see
CIORANESCUI8].

Concerning the proofs of (a), (c) and (d) we refer toe&R [2] and SCHOPFERet. al.
[20]. Part (b) is obvious.

Definition 3.4. TheBregman projectiomf x € X ontoC with respect to the function
fp(x) = |z||* is the unique elemei?, () € C such that

Ay (2, N (z)) = ll;Y;igAp(m,y) . (3.5)

We also writel1? for the Bregman projection in the dudl* with respect tof; . Ob-
viously we have?,(z) = z < x € C and thugN%,)? = N, andR (M%) = C. Similar
to the metric projection Bregman projections can be characterized byagioaal in-
equality, too. Moreover they have an important descent property wépers to the
Bregman distance. The proof of existence and uniqueness of thenBrnegrojection
as well as the proof of the next proposition are containediB#R, BUTNARIU [1].
There and e.g. in BUSCHKE ET. AL. [4] as well as in BITNARIU, RESMERITA [7]
the reader can gain more insight into Bregman distances and projectibnsespect
to more general functions than powers of the norm of a Banach space.

Proposition 3.5. An elemeng € C is the Bregman projection afontoC with respect
to the functionf,, iff

(Jp(Z) — Jp(x)|ly—2) >0 forall yeC. (3.6)
Moreover this variational inequality is equivalent to

D (Z,y) <Dp(z,y) —Oy(x,z) forall yeC. 3.7)
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In Hilbert spaces the Bregman projection with respect to the fungtiamincides
with the metric projection. But in general they differ from each other,raexample
given in [1] demonstrates. In the same paper the authors asked wiretipeneral
Banach spaces there is a relationship between metric and Bregmartipngemto
closed convex sets. The following proposition gives answers.

Proposition 3.6.
(@) The Bregman projection and the metric projection are related via

Po(z) —axz=N%__ (0) forall zeX. (3.8)

Especially we havé(0) = N7 (0).
(b) The metric projection has the translation property

Pyic(z) =y+ Po(x—y) forall z,yeX. (3.9)

This property indeed distinguishes the metric from the Bregman projectioe i@
have

MY.c(@)=y+Ng(x—y) foral z,yeX

implying
My.c(@) = Pyic(z) foral =zyeX.

(c) We have|lf (z)| < ||z|| forall z € X iff 0 € C.
(d) The projections satisfy

Ny o(Az) =ANZ%(xz) and Pyc(Az) =APc(z) forevery AeR.

Especially ifC is a cone, thethC = C for A > 0 and thus the projections onto
a cone are positively homogenous of dedte@rojections onto a symmetric cone,
i.e. —C = C, are homogenous of degrée

(e) Suppose we knoWf, () and set

\ { 1 , =0 or M&(z)=0

r—p
[l |l r-1 i
Hﬂ‘é(z)l\) , otherwise

Then we obtain the Bregman projectionaobnto the sef\,C' with respect to the
functionf, (r > 1) via
M5 o(@) = AM2(2) . (3.10)

Moreover ifz € \,C thenz € C. If C'is a cone, then

¢ (z) = XN (2). (3.12)
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Proof. To see (a) we compare the variational inequalities (3.2) and (3.6)4o€"and
z:=7—xz € C = C —z and obtain the equivalences:

(Jp(Z—z)|ly—2) >0 forall yeC
s (@ —2)|(y—2z)—(2—2))>0 forall yeC
& (L) |§-2 >0 foral geC.

We show (b) by using (3.8):
Py+0(x) =+ nﬁﬁ_c),w(o) =y+(x—y)+ n’é,(w,y)(o) =y+Po(z—vy).

Now let the Bregman projection fullfilly, - (z) = y + M¢(z — y) forall 2,y € X.
Then we get

Prio@) =2+ o0 =a+ (—2+M (0= (-2))) =M. o(x).
(c) If 0 € C then by takingy = 0 in (3.6) we get
0= (J(NE () | NE(2)) — (Jp(2) [ME(2)) = [NE(2)” = (Jp(2) [NE(2))
and therefore
IME @)1 < (Jp(x) | AE (@) < [P~ [NE ()]

which yields||M%(z)|| < ||z||. Conversely if this inequality is valid for alf € X then
for z = 0 we have|M7,(0)|| < ||0]] = 0 and thus 6= NZ%(0) € C.
The homogeneity (d) is a consequence of proposition 3.3 (b) ang @&use
A, (A2, AN%(2)) < Dy,(Az,Ay) forall ze X, AyelC
& D2, NE(z) < Dp(z,y) foral zeX,yeC

and thus also
Pye(Ax) =Xz +N5, . (0)=Xz+ANP%__(0) =\ Pc(x).

(e) Due to the homogeneity of the duality mapping (2.2) and relation (23ee that
for z # 0 andl?(z) # 0 and ally € C' we have

(- (A2 (2)) = T (2) | Asy — AT (2))
= @) [, (M2 ) — [l () [ — T2 ()
= Al (M) — Jy() |y — M2(a)) > 0.

Moreoverl;.(0) = P-(0) = NZ%(0) by (a) of this proposition and if?,(z) = 0 and
x # 0thenforally € C

(J+(0) = Jp(2) [y = O) = [[z[|""" (Jp(0) = Jp(x) [y = 0) = 0.



10 F. Sctopfer, T. Schuster, and A.K. Louis

This proves the first part of (g).
Now letz be in\,C. Thenz = M} ,(x) = A.N¢(2). If 2 = 0o0rN¢(z) = 0then
A = 1 and therefore = NZ (x) € C. Otherwise we get

z|| = A ||N% (2 _<x||) nz(z)|,
Il =X lMe@)l = (jreyp) IM6@]
which gives||z|| = |N%(z)||. HenceX, = 1 andz = MN%(z) € C.

We characterize Bregman projections onto closed affine cones aed effme sub-
spaces. See alsoLAER [3] and SONG and (o [21] for the non-affine case. In light
of prop. 3.6 (b) considering the affine case is meaningful. And in doation with
(3.8) this especially enables us to use the same iterative scheme to congiriteas
well as Bregman projections onto affine subspaces which are giveheviaullspace
or the range of a linear operator.

For a subspacE C X the set/+ c X* is theannihilator of U

Ut :={z*e X*|(z*|u)=0 forevery uecU},
For a (convex) con&’ C X the setK ™ c X* is thedual coneof K
K":={z*e€ X*|(z*|k) >0 forevery ke K}
andK° = —K is thepolar coneof K.
Proposition 3.7. Let U ¢ X be a closed subspac& C X be a closed cone and
z,y,z € X be given.
(@) The following assertions are equivalent to each other:

() ==, (),
(i) z—ze K and J,(z)—J,(y)e KT and (J,(z)—Jp(y)|x—2z)=0,

(i) () =% e dp(2).

(b) In case of a subspadé the equivalencies read as

() =="NZ2 (),
(i) z—2€eU and Jy(z)—J,(y) €U,
(i) Jp(z) =019 e Jp(2)-

Proof. Assertion (b) is a consequence of (a), because a subspace imbg@econe
with U+t = U*L. Let us prove (a) by the variational inequality (3.6). An elemeig
the Bregman projection af ontoz + K iff x — z € K and
(Jp(x) — Jp(y)| (z+k)—2) >0 forall ke K
& (Jp(x) = Jp(y) |z —x) + (Jp(z) — Jp(y) | k) >0 forall ke K (3.12)
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Suppose thatJ,(z) — J,(y) | ko) < O for somekg € K. SinceK is a cone we get
Ako € K for all A > 0 and thus by (3.12)

(Jp(z) — Jp(y) |z — ) + X (Jp(z) — Jp(y) | ko) >0 forall X >0.

But then the left hand side convergestso for A — oo, which leads to a contradiction.
Therefore inequality (3.12) can be fulfilled for &lle K only if

(Jp(z) — Jp(y) | k) >0 forall ke K,

i.e.if J,(z) — J,(y) € K*. Sincex — z € K thisimplies(J,(z) — J,(y) |z — z) > 0.
But by choosingt = 0 in (3.12) we also getJ,(z) — J,(y) |z — z) > 0 and thus
(Jp(z) — Jp(y) |z — 2z) = 0. Hence (i)= (ii). And since (ii) implies the validity of
(3.12) we also have (ii}> (i). Finally by the equality K+)* = K it follows that (ii)
< (iii) is just assertion (ii}= (i) in the dual space.

By means of these characterizations we are able to deduce the affienvefthe
decomposition theorems established inB&R [3] and SONG, CAO [21]. See also

Proposition 3.8. Let U ¢ X be a closed subspac& C X be a closed cone and
z* € X* be given..

(@ X canbe decomposedintoX = K @ J;(z* + K°) ,i.e. everyr € X canbe
uniquely written in the form

v =k T (ko)

Withzg € K, 2%, go € 2* + K° and(z}., o — 2" |2x) = 0. More precisely we
have
v =2 —N_ Ji(2") and 2l o =N ko Jp(z).

If 2* = 0thenzx = Px(z).
(b) X canbe decomposed intoX = U @ J; (2* + U+) ,i.e.everyr € X canbe
uniquely written in the form

r=ay+ Jy(xk y0)
withzy € U andx’;*wL € z* + U*. More precisely we have
vy =x—-MN ;J;(z") and 2. ., =N%L . Jy(2).
If 2* = 0thenzy = Py(x).
Proof. We only prove (a) since again (b) follows from (a). We set
e igo =N o Jp(x) € 2"+ K° and zx =2 —-NY_, Ji(2") e K.

By proposition 3.7 (a) an¢—K)* = K° we have

g (@oeigo) = Jg MLy o Jp(@) =TT 3 (27)
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with (2%, , o — 2" | 3 (23 o) — ) = 0 and thus
£ = (2= T (@0e)) + Ty @ o) = T+ (@)
with (3., o — 2" |2x) = 0.
The decomposition is unique, because ¥ zx + J; (27, o) With somerx € K,
i go € 2" + K°and(zl., xo — 2% |xx) = 0 then we have
S (@2 ko) = Jg (Jo(2) = —ax € =K = (K°)"

and
(#hey o — 2 | T (ke geo) — Jo (Jp(2))) = (@5 ko — 2%, |2k) = 0.
Applying proposition 3.7 (a) we conclude that inde€d, ... = N%. .. J,(z) and

Ty =2 — Jy (0 o) =x— Ty ML o Jp(x) =0 — N Jr(2%).

We continue by showing how far results concerning orthogonal projeciioHilbert
spaces can be carried over to Bregman projections onto affine sss|@o far we do
not know whether similar results can be formulated for the metric projedian un-
less proposition 3.10 (b), which has been proven for the metric profefciic: = 0 in
ALBER [3].

Lemma 3.9. LetU C X be a closed subspace and= X be given. Then
R(J,() ~ 1, () = U
Proof. By prop. 3.7 (b) we have for alt € X
Ip(@) = Jp N () = Jp(z) — ni,(m)JrUL Jp(2) € U+,
Conversely for* € U+ we set),(z) :=y* + MY, J,(z) € U+ and get

Jp(x) - nzp(xHUL Jp(z) = Jp(x) - n?]L Jp(z) =y".

Proposition 3.10. Let U,V C X be closed subspaces and= X be given. The fol-
lowing assertions hold true.

(@) We havel?  (z) =N (y)iff Jo(z) — Jp(y) € U*.

z

(b) The Bregman projectioni’_ ; is J,(.) — J,(z)-positive, i.e.
(N2 (x) =z Jp(x) — Jp(2)) >0 forall zeX.

(c) I'I’Z’+UI'I§+V:I'I§+U & UcCV.
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(d) The compositiol”, ;, N?_ , is again a Bregman projectidfi}, onto some closed

affine subspaceé/ c X iff
RO, , N2, ,)Ccz+UNV.

In this case we hav@?_ , M? , =NY ..
(e) Letl : X — X be any mapping with the properties

() N(z) =N(y) & Jp(x) = Jp(y) € U,

(i) N2=nm,

(i) N(.)—zis Jy(.) — Jp(z)-positive

Thenl = N?_ .
affine subspaces.

(f) The sum?, (.) + N7, (.) — z is again a Bregman projectiofl’, onto some
closed affine subspadd c X iff

Hence (i)-(iii) characterize Bregman projections onto closed

Dpy(zyz+u+v)=0,(z,24+u) +Dy(z,2+v) forall welU,veV. (3.13)
And in this case we have?_ () + 1%, () —z=1%7 . ().

Proof. (a) We set:™:= N~ (z). If N7, (y) = Z then by applying part (b) of propo-
sition 3.7 we get

Tp(@) = Tp(y) = (Jp(@) = Jp(&)) + (Jp(F) = Jp(y)) € UL + U =U".
Conversely ifJ,(z) — J,(y) € U+ then
Tp(Z) = Tp(y) = (Jp(&) = Jp(@)) + (Jp(2) = Jp(y)) € UT + U+ =U",

and sincer™— z € U we again by proposition 3.7 (b) conclude thatT?_, (y).

(b) The Bregman projectioll”_ ; is indeedJ,(.) — J,(z)-positive, because applying
the decomposition in prop. 3.8 (b) B(z) € X* = U+ & J,(z + U) together with the
monotonicity of the duality mapping yields

(MZ,p () = 2] Jp(2) = Jp(2)) = (MZ y(2) — 2| Jp N2,y (2) — Jp(2)) = 0.
To prove (c) we consider the following
nt Nt (z)=n% ,(x) forevery zeX
& Jy(z)—J,NE ,(z) e UL forevery ze X
& Vicut.

The first equivalence is satisfied due to (a) and the second one is vabaidee of
lemma 3.9.
(d) For allz € X we have

Jp(z) = Jp HZ+U I_IZ+V(x) = Jp(z) = Jp nzz)JrV(I)_"JP HZ+V<I) —Jp HZ+U HZ+V(I) .
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By lemma 3.9 the right hand side liesin + U+ c (UNV)* and by (a) we conclude
that

N2 vy (@) =M pay M2 N2y (2)
Incaser(M%, ,NY, ) Cz+UNV we have
N vay Mg ey () = N2, N2y (2)
yielding
N vy (@) =N, N2 (2).
Now suppose thdll’, , N7, . = MY, for some closed affine subspatec X. Then

we obviously have
z+UNVCMcCz+U.

Especially we get € M and thereforé/ = 2+ W for some closed subspaté C X.
Hence

p p — p p — p p p — p p — ) p
rlz+W I_Iz+V - rl]\l I_Iz+V - rlz-‘rU rlz+V I_Iz+V - rlz-‘rU rlz-‘rV - I_IM - rlz+W

and by (c) we conclude th&v ¢ V and thusM = z + W C z + V. We finally arrive
at
z+UNVCMC(z+U)N(z4+V)=2+UNV,

from which we inferthat\l = >+ U N V.
(e) We observe that (i) and (i) imply thd} (z) — J, M(x) € U+ forall z € X. Writing
Jp(x) = (Jp(x) —Jp n(x)) +Jp n(x)
and keeping in mind the uniqueness of the decomposition in propositiobh)3a&(see
that in order to showl(z) = N%_ () it suffices to showl(z) —z € U. Lety* € U+
be arbitrary. Then by (iii), (i) and (ii) we deduce
0 < (M Jq (v + JpN(x)) — 2 | (" + JpN(z)) = Jp(2))
= (A(N@) = 2|y + J, (@) = Jp(2))
(M(z) = z|y" + J, N(z) = Jp(2))

= (M) = z|y") + (M) = 2[Jp, () = Jp(2)) -

Sincey* € U+ is arbitrary this impliegMN(z) — z|y*) = 0 for all y* € U*. Hence

N(z)—z€ (UHLt =T.

() Suppose thafl?_,(.) + M%7, (.) — z = O%,(.). We at first show that in this case

we must havel?, =M%, and to this end we check (i)-(iii) in (e). (i) is obvious
and (iii) holds because

I-IZI?\/[() —k= HZ+U(-) —z+ I'Igﬂ/(.) -z

is J,(.) — Jp(z)-positive. To see (i) we at first shon V' = {0}. Foranyz e UNV
we getl’ (2 +z) = (2 + ) + ( + 2) — z = 2+ 2z and thus

z+2e=N5,G:+z)=N,08,(z+2) =04 (z+22) = 2+ 4z.
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Hencer = 0 and therefor& NV = {0}. With this and (a) we get

M (z)
e U M y(2) - N2y (y)
e Nyl -NZy(y) =0

z

& Jp(x) = Jp(y) e Ut NV

= ML)

= N0y -N,y(x) eV
and MY, (y)—-N%,,(z)=0
= (U+V)*t.

By (e) we conclude thaf’;, = I‘IQW and sincer (M%,) € z + U + V we finally
getny, =N, vy
It remains to show (3.13). Let € U, v € V be arbitrary. According to proposition
3.3 (d) the functiory (t) := A, (2, 2z + tu +v) — Dp(z, z + tu), t € Ris differentiable
with
/(1) = (= + tu+v) = Jy(z + tu) | u)
Since we have foralk e U,v e V
N yz+tuto)+N0 (z+utv)—2z = z+utv
= Usz+u—-N ,(z+utv) = N (z+utv)—z—v eV
= z+u—N% ,(z+ut+v) = 0
= Jy(z+u+v) = Jy(z+u) €U,
we conclude thaf’(¢) = 0. Hencef is constant and we get
DNy(z,z+u+v)—Dy(z,24+u) = f(1) = f(0) =Dy(2, 2+ v).
Conversely suppose that (3.13) holds. Then foralh € U, v € V and with
g(t) =D0p(z,ztu+tw+v) =82,z +u+tw) +Dy(z,2 +v)
we get
(p(z+utv) = Jp(2) |w) = g'(0) = (Jp(2 + u) = Jp(2) |w)

and consequently,(z + u + v) — J,(z +u) € U+. That also proved,(z +u + v) —
Jp(z +v) € Vtandthusy,(z +u) — J,(2) € V+. Forz € U NV we then get

0= (Jp(z+2) - Jp(z) |z) = <JP(Z + ) - Jp(z) |(z+2) —2)

and by the strict monotonicity of, we conclude that + = = z whencex = 0 and
thusU NV = {0}.

In a similar way we check (i)-(iii) in (e) in order to show that=M%_, . |, for MN(z) :=
N2p(@) + N2,y (2) — 2

Relation (3.13) can also be written in the form

|z +u+o||P + ||2||° = ||z +ul| +|z+0||P foral weU,veV. (3.14)
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In Hilbert spaces this is equivalent 6LV if p = 2. But in general (3.14) seems to
be stronger than requiring,(U) c V+ andJ,(V) c U+. Because of the pointwise
(componentwise) definition of the duality mappingdp (1,,-) spaces (3.14) is satisfied
if the powerp is the same number as theefiningL, (I,) andifzand allu € U,v € V
are functions (vectors) with pairwise disjoint support. Combining this witippsition
3.7 (b) we obtain the following examples.

Example 3.11.
(&) Foranyu € X we have

[(Jp () [w)] 1~

ngpar{u}(m) = T ale sign((J,(z) [u)) u.

(b) In(R3,]|.||,) for U :=spar{(0,0,1)} andV := spar{(1,1,0)} we get

|p(x1, 2)]9~

1
N7y ((z1, 2, 23)) = (0,0, 23) + -1 sign(¢(z1,x2)) (1,1,0)

with
(;5(:)31, xz) = |x1\p‘1sign(x1) + ‘$2|p_13igr(l‘2) .
In the next proposition we show how Bregman projections onto a spdoialdé
affine subspaces, namely finite intersections of hyperplanes, camiyrited via solv-
ing a finite dimensional optimization problem. The subproblems we havelwe B0

the sequential subspace optimization methods will be of such a form.
For 0# u* € X* anda € R we denote by (u*, ) thehyperplane

Hu  a):={ze X | |z)=a}.

Proposition 3.12. LetH (u3, a1), . .., H(ul, an) be hyperplanes in a reflexive, smooth
and strictly convex Banach spaéesuch that the intersection

N
H:= ﬂ H(uf, ag)
k=1
is not empty. Forxg € X leth : RV — R be the convex function

q N
1
h(t) ::5 +Ztk,ak: 3 t:(tjnatN)eRN
k=1

N
Jp(xo) - Z tug,
k=1

with continuous partial derivatives

N
8jh(t)——<u; J;(Jp(a:o)—Ztku,t>>+aj ., j=1...,N.
k=1
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Then the Bregman projection o onto H is given by

N
N% (z0) = J; (Jp(xo) - ka uZ) ,
k=1

wheret = (#1,...,1x) is a solution of theV-dimensional optimization problem

min h(t) . 3.15
min h() (3.15)
Moreover if the vectors], ..., u} are linearly independent thehis strictly convex

andt is unique.

Proof. Convexity ofh is obvious, differentiability and continuity of the partial deriva-
tives are consequences of parts (b), (e) and (f) of propositianFhBanyz € H we
can write

H=z+ (spafui,...,uy})" .

Thus in view of proposition 3.7 (b) an element™X is the Bregman projection af
onto H iff z € H andJ,(Z) € J,(xo) + spafuj, ..., ul}, i.e.

N
Jp(%) = Jp(z0) — ng up,
k=1

With SOmefy,...,tx € Rsuch thafu; |z) = o forallk = 1,..., N. The coefficients
t, are uniquely determined in case the vectofs. .., v}, are linearly independent.
This is equivalent to

Jp(Z) =14 Jp(2),

Jp(zo)+spa{uy,...,uy } “P

i.e.t = (1,...,ix) € RN is a solution of the optimization problem

N
tlgéjr\], A, <Jp(z)7 Jp(w0) — kzﬂtk ult)

N N q
1 N 1 N
= min Z|zllP = (2| Jp(z0) + D tx (z|up) + = || Jp(wo) = > trui||
TERN P k=1 q k=1

which in turn is equivalent to (3.15) sin¢e| uj) = ay for z € H.

Due to the nice properties of the functi@an which is strictly convex and contin-
uously differentiable with known partial derivatives, the optimization feob(3.15)
can be efficiently solved by standard optimization routines like Newton’soadetton-
linear conjugate gradient or variable metric methods, see eRRE] STOER[13] or
NOCEDAL [17] for an overview.
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4. Sequential Subspace Optimization Methods

Let A : X — Y be a continuous linear operator between Banach sp&c¢és and
A* ' Y* — X* be its adjoint. We are interested in computing projections onto affine
subspaces of the form

z+N(4) and z+R(A),

whereA(A) is the nullspace an& (A) is the closure of the range of. At first we
observe that it suffices to know a procedure to compute Bregmarcfpoojs onto sets
of the formz + A/ (A), because in light of (3.8) and proposition 3.7 (b) we have

p

Pepnay(@) = o+ T viay(0),

Mm@ = 92 Mo enan 7 (2)

Furthermore ifz € X is any solution of the operator equatida: = y for some given
y € R(A) then we can also write

2+ N(A) = Myy—y ={z € X|Ax = y}.
Hence solving the constraint optimization problem
minf(z) st Ax=y

with f(z) = |lzo — z|| (f(z) = A,(zo,2)) is equivalent to computing the metric pro-
jection (Bregman projection) afp € X onto the sef\/4,—,. The elemen®,,,,  (0)
is also called theninimum norm solutionf the operator equatioAz = y.
In ScHOPFERet. al. [20] we have already analyzed a generalization of the well-known
Landweber method for the computation of minimum-norm solutions of linparator
equations in Banach spaces. The iteration method reads as

Tpi1 = J (Jp(xn) —t, A% (A, — y)) n=01... 20=0 4.1)

q

with appropriately chosen parameters We have shown the strong convergence of the
method for smooth and uniformly convék and arbitrary Banach spac¥sas well as
its regularizing properties in case of noisy dafaand disturbedi,, by applying a dis-
crepancy principle. The method turned out to have good regularizogepties but the
convergence is rather slow. Interpreting/,. (Az, —y) as a search direction and adopt-
ing ideas from sequential subspace optimization methods, SR&INS, ZIBULEVSKY
[16], NOCEDAL, WRIGHT [18], STOER, YUAN [22]), we propose a modification of
this method to accelerate convergence. We shortly motivate our ajpproac
One step towards proving the convergence of the above method waswidlsdt the
parameters,, can always be chosen in such a way that the sequence of the Bregman
distances of the iterates to potential solution pomts M-, is decreasing suffi-
ciently, i.e.

Ap (I71,+1(tn)7 Z) < Ap(xna Z) - Sn
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with somesS,, > 0. After a short calculation this can be seen to be equivalent to
1 . 1
p [ Tp(20) =ty A" T (Azy — y)||* + tn (Jr(Azn —y) |y) < p [

The important thing is that this relation is independent of the in generalwnkpoints
z. Hence ag,, we might as well take the minimizer of the functional

1
hn (1) 5=5HJp(ﬂcn)—tA*wZHqut(wZ\w , teR

with w? := J,.(Az, — y). In view of proposition 3.12 this just means that we obtain
the next iterate:,, .1 by computing the Bregman projection ©f onto the hyperplane
H, = H(A*w}, (w}|y)), which contains the set of potential solutiohs,,—, be-
causeA*w} | z) = (w |y) for z € M4,—,. Rather than using a single search direction
A*w? in each iteration a finite-dimensional search space

U, =spaf{A*w,, 1,..., A"w;, y } C R(AY)

is used so that we minimize

N, 4 N
1 n n
hn(ta, ..., tN,) = p Ip(xn) — Ztk A*wi|| + Ztk (Wi |y) .
k=1 k=1

to get a vector of step siz€g,, 1,. .., un n, ). That means that we projeet, onto

Ny,
Hy o= (VH(Awi, (wi|y) D Masey
k=1

by iterating

N,
Tn+l = J; (Jp(xn) - Z Hn K A*w;,k) , n=01...
k=1

Since we already know that the directiott J,.(Az, — y) assures convergence;:
should contain that direction. Furthermore, in order to guarantee tha¢théderate re-
mains optimal with respect to the old search sgége, and the optimization achieved
so far is not spoiled by searching in new directions, we chagsg C U;; C R(A*)
implying H,,_1 > H, D Ma,—,. Doing so we hope that already after a relatively
small number of iterations the setH,, is a good approximation t&/4,—,,.

In the following X is assumed to be smooth withsmooth dual, which implies
that X is reflexive and uniformly convex, whereadsis allowed to be an arbitrary
Banach space. If the duality mappidg of Y is set-valued then we also writg(y)
for an arbitrary but fixed element in the sk{(y). To compute the Bregman projection
I‘Iﬁhwzy (zo) of 29 € X onto the sef\4,—, for some givery € R(A) we consider the
following sequential subspace optimization method.
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Method 1.

(SO) Takerg as initial value, set := 0, U*,; := {0} and repeat the following steps:

(S1) IfR,, :=||Az, — y|| = Othen STOP else goto (S2).

(S2) Choose the search spadg C R(A*) and N,, search directionsi*w;, , € Uy,
k=1,...,N,, suchthat

A" J(Az, —y) €U, and U, ; CU;=spaA wy, 1,...,A"w; . }.

(S3) Compute the new iterate:

Nn
Tn+1 = J; (Jp(‘rn) - Zﬂn,k A*w:,,k:> ) (42)
k=1

wherep, = (pn1,-..,un,n,) iS @ solution of theV,-dimensional optimization
problem
min  h,(t)
t ERNn
with
7 N,

1 .
ha(t) = = + )t (wh |y
q k=1

Nn
Ty () — Ztk A*wl
k=1

(S4) Setr — n+ 1land goto (S1).

A natural choice folU;: fulfilling the requirements in (S2) is
U =spaA*J,.(Azo — y),..., A*J.(Az,, — y)}.

Proposition 4.1. Method 1 either stops after a finite number of iterations in case
R, = 0 wherez,- = I‘Ifj”w“:? (z0) or the sequencéz, ), converges strongly to

Yy

I‘IIJ”WAH (z0). Moreover the following holds:
N,

() ForH, := ()| H(A"w}, (w},|y)) andallz € M,—, we have
k=1

MAz:y CH,CH,_ 1, Tpt1= I'I’;In (1‘0) s Jp(l‘n+1) = nip(wo)-*-Uﬁ Jp(z)

(b) We have<w,*%k ( Anin — y> -0 forall k=1,..., N,
(c) Forall z € Ma,—, the estimate

Ry
Dp(zn41,2) < Dp(an,2) — m )
is valid, which can also be expressed in terms of the funétjoby
RP
hn(tn) < hp(0) = ——2—r
(1) < 1 0) = Gt AT

whereC > 0 is the constant appearing i{2.5) for the g-smooth dualX™*.
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Proof. To see that 4,—, C H,, we pickanyz € Ma,—, andgetforalk =1,..., N,
(Afwp, 1. | 2) = (wp i [ A2) = (wy, 1 |Y) -
Recalling thatU; ; C U, this implies
H,=z+U)N*Ccz+ U =H, 1.

Computing the new iterate via solving min, () we getforallj =1,..., N,

t ERNn
Ny,
0=hhults) = - <A*w:;,j J; (me) —Ztn,kA*w;,k>> + (s | )
k=1
= - <w:‘” | Azpi1 — Z/> . (4.3)

Proposition 3.12 then yields, 1 = M7}, (). Applying proposition 3.7 (b) anél,, =
z+ (Ur)* foranyz € M-y C H,, we furher get

Ip(Tpi1) = I'I?,p(mw; JIp(z).
Inductively this leads to
Jp(xn) + U = Jp(z0) + U
by (4.2) and finally we get
Jp(Tpi1) = I‘I?]p(xo)w: Jp(2).

Hence we indeed havg, 1 = ﬂ%n (z0) and (a) is proven.
Part (b) follows from (4.3).
It remains to prove (c) and the convergence statement. As showe alghave

Tp(an) = Jy(x0) € Uy € R(A) = N(A)*.

In caseR,- = 0 for somen* we havez,- € M4,—, and by proposition 3.7 (b) we
conclude that,,- = I'Iﬁhm:y (z0), i.e. we are done.

Thus, let us assumg,, # 0 for alln € N and letz € My4,—, be arbitrary. We will at
first establish the monotonicity estimate

i

Dy(wn1,2) < Dp(Tn,2) — ——F——
P(z +1 Z)— P('x Z) pcp_j_HAHp<

Dy(zp, 2).
Since the search spat# is chosen such that it contains J,.(Ax,, — y) we have for
all >0

Ip(xn) — pA* T (A, — y) € Jp(an) + U
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Together with7,(z,11) = I‘I?]p(zn)w; J,(z) we get

Ap(xn+172) = A;(Jp(z)aJp(xrwl))

< B (Jp(2), Jp(an) — pA* T (Azy, — y))
- %nznp — (Tp(ea) | 2) + T (e (A — ) | )

1 _
+5”Jp(mn) —pA Jr(Azn - y)Hq-

We estimate the last summand by (2.5) and Witti|| = || A|| we obtain

1 —
Dp(zni1,2) < Z;II»ZII‘”—<Jp($n)|Z>+u<Jr(Arn—y)\y>

1 _
+5Hxn|‘p — K <Jr(Axn - y) ‘ A$n>
C_ _
+EﬂqllAqulAIn — ||
_ C_
= Dp(wn,2) — pR}, + EuqllAllqRﬁf’”q.

The right hand side of the above inequality is easy to minimize as a functiprbpf
setting its derivative equal to zero, which yields
g—1 R;z
CllAllery ™Y

p—r
RTL

LA (4.4)

& u=

Inserting this: we arrive at the announced monotonicity estimate

R’y

Ap(xn+lvz) < Ap(xm Z) B m

<Dp(zy, 2).

Hence(R,,),, converges to zero and the sequeg(z,,, z)) s strictly decreasing.
Proposition 3.3 (c) assures that the sequengg, remains bounded. To prove the
convergence ofz, ), to My, (zo) it suffices to show that every subsequence has
in turn a subsequence converging stronglyith, ~ (zo). Let (zn, ), be an arbitrary
subsequence. Since it is bounded we may assume that it convergkly weesome

Z € X, and since the mapping— || Az — y|| is weakly lower semicontinuous we have

|A% — y|| < liminf | Az, — y| = liminf R, =0,
k—oo k—oo

whencex™e My,—,. Now we use the weak lower semicontinuityyf in the second
argument, as stated in proposition 3.3 (d) and the already proven relafipart (a)

T, = HZ;I%A("EO) and I'If\“w:y (l‘o) € MA:L’:y C anf]_,
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to arrive at
By (20, MYy, (20)) < Ap(0,F)
< Iilgn inf A, (zo, 2y, ) < limsupA,(zo, z,, )
00 k—o0
<

AP (l‘o, I_II;\/]Az:y (Z‘o)) ’

From this we infer that the sequen@.ep(a:o,g:n,c))]C converges and that its limit is
equal to
Ap (xo, I'Iﬁ’WAm:y (xo)) = Ap(.’L‘o, .f) .

Since the Bregman projection is unique we must have I'Ifl’mm:u (z0). Finally by
means of proposition 3.3 (e) we conclude that, ), indeed converges strongly to
rl]])\/[A,.:, (SUO).

Although we have restricted ourselves here to the case;efraooth dual, conver-
gence can also be proven for the general case of a uniformly smoathvith similar
techniques as in BNESKY ET. AL. [5], where we analyzed iteration methods for the
minimization of Tikhonov functionals in Banach spaces.

We emphasize that the costly application of the operatoend A* has to be done
only in step (S2) but not in (S3). Therefore the numerical effort teesthe minimiza-
tion problems in (S3) will be significantly minor as long as the dimengigns low.

It may therefore be more reasonable to drop the requirefignt C U, which to-
gether withA*J,.(Az,, —y) € U} implies that,, increases, and bound the dimension
N,,. However our proof of the strong convergence essentially relied aetherement
U,—1 C U}. Nevertheless we still get the following, weaker result.

Proposition 4.2. Consider method 1 when for the choice of the search sp&cm
(S2)we only demand that it containt* J,.(Az,, — y) and that the dimensiofy,, does
not exceed some fixed upper bouvide N. Moreover let the duality mapping, be
sequentially weak-to-weak-continuous, i.e. it maps weakly convesggunences in
X to weakly convergent sequencesXin. Then the method either stops after a finite
numbern* of iterations in caseR,,- = 0 wherez,,« = H’I’\,{Am: (zo) or the sequence

Yy
p
(z,)n cOnverges weakly 0 Mas, (z0). Moreover we have

MAm:y C Hna Tp4+1l = nf{ (xn) 5 Jp(fL'nJrl) = nq] (zn)+U Jp(z> , 2 € MAz:y .

n Jp

Assertiongb) and(c) of propositiord.1 remain valid.

Proof. The proof is done similar to that of proposition 4.1 taking according modi-
fications into account. Note that the relations,; = MY (z0) and Jy(z,41) =
I'I%p(onU:L Jp(z), which were necessary to prove strong convergence, do not longer
hold. Nevertheless it remains true that every subsequenge,df has in turn a sub-
sequencéz,, ), converging weakly to some € M 4,—, and that/,(x,, ) — J,(zo) €

R(A*). SinceR(A*) is weakly closed this implies thai,(z) — J,(x0) € R(A*)
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in case the duality mapping, is sequentially weak-to-weak-continuous. Hence: ~
M4, (zo) and we conclude thdt:,,),, converges weakly tBl,,  (zo).

Remark 4.3. We remind that in finite dimensions weak and strong convergence coin-
cide. Furthermore the duality mappings of thesequence spaces are sequentially
weak-to-weak-continuous. This is not valid for tlig-function spaces, seel@-
RANESCUI8].

5. Numerical Experiments

To illustrate the advantage of using sequential subspace methods wdilerg deith
large scale problems we computed the minimumorm solutionse], of matrix equa-
tions Az = y for different values and dimensiongv of the search spaces. The matrix
A was a randomly generated 10Q06000-matrix with entries if—1,1]. To obtain
systems with known solutions of minimupanorm equal to 1 we generated a random
vectory* in [—1, 1]199 set

. q . +
ol = ——— "> and y:= Ax'.

P HJ;(A*Q*)HP b
We implemented method 1 in MLAB where the minimization subproblems in (S2)
were solved with the functionNiNUNC, which is a BFGS Quasi-Newton method. As
search spaces we used

U; = Spar{A*JT(AxmaX{O,anﬁ-l} - y)y R A*JT(AJ}” - y)} )

whence dinfU) < N with N = 2,4,6. Depending on the smoothness of the dual
(RSO0 ||.||,,) of (R®0%C ||.||,,) we usedJ, andA; in casep < 2 andJ, and4, in case
p > 2. The algorithm was terminated when

1yll2

Table 1 lists the number of outer iteratiomgor different values op and N, showing
that already using search spaces with low dimensions helps to reducartienof

the costly applications oft and A* tremendously. The convergence of the Landweber
method (4.1) where only one single search direction was used i-e.1, was signifi-
cantly slower as tests in [20] demonstrated where we needed thoudatsdatmns to

get reasonable approximationsﬂp Figures 1-2 confirm that the Bregman distance
of the iteratese,, to the solutiom;f, is indeed decreasing in each iteration as stated in
proposition 4.1 (c), but this need not be true for the norm distance oreiduals.
Moreover they demonstrate that in gendlsg{:c,y)% is not proportional tdjz — y||,
whereas this is valid in Hilbert spaces foe 2.
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Figure 1: Relative error of the residual, norm and Bregman distantedferates:,,
to the minimump-norm solutiom;j, (log-scale) vs. number of iteratiomsfor p = 1.2
(top),p = 1.5 (bottom) and dimension§ = 2,4, 6 of the search spaces
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Figure 2: Relative error of the residual, norm and Bregman distartbe d@erates:,, to
the minimump-norm solutionrj) (log-scale) vs. number of iterationsor p = 6 (top),
p = 10 (bottom) and dimensions = 2,4, 6 of the search spaces
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|p=12|p=15|p=6|p=10

N=2 435 22 102 297
N=4 211 15 79 183
N=6 137 14 49 131

Table 1: Number of iterations for differeptnorms and
dimensionsV of the search spaces

6. Conclusions

We have placed the problem of computing minimum-norm solutions of linperae
tor equations in the context of computing metric and Bregman projecticisafime
subspaces. Using the simple relationship(z) — = = M¥%__(0) enabled us to use
the same iterative method for the computation of metric and Bregman tiooigonto
affine subspaces which are given by the nullspace or the range ofa diperator.
Furthermore we modified an earlier proposed method of Landweberusing ideas
from sequential subspace optimization methods to accelerate converged to ob-
tain a powerful iteration scheme. The construction of that scheme falladess from
the CG-algorithm where in each step several search directions areitae@cTcount.
The convergence could be distinctively accelerated by using this aeldastategy.
We at last mention that the developed method must not be seen as bdiag jos
provement of the Landweber method but as general optimization agpleading to
a highly efficient solver for linear inverse problems in Banach spaces.

Further research should include the investigation of the regularizingepyopf the
subspace method, convergence rates in connection with appropriate sonditions,
as well as the application to real-world problems.
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