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Abstract. In this article we investigate and prove relationships between metric and Bregman pro-
jections induced by powers of the norm of a Banach space. We considerBregman projections onto
affine subspaces of Banach spaces and deduce some interesting analogies to results which are well
known for Hilbert spaces. Using these concepts as well as ideas from sequential subspace optimiza-
tion techniques we construct efficient iterative methods to compute Bregman projections onto affine
subspaces that are connected to linear, bounded operators between Banach spaces. Especially these
methods can be used to compute minimum-norm solutions of linear operatorequations or best ap-
proximations in the range of a linear operator. Numerical experiments illuminate the performance
of our iterative algorithms and demonstrate a significant acceleration compared to the Landweber
method.
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1. Introduction

Projections onto affine subspaces are an important ingredient to solve constrained opti-
mization methods or to develop efficient iterative solvers for linear operator equations.
The classical method of conjugate gradients, where one computes projections onto an
affine Krylov subspace, can be seen as a typical example for such aniterative solution
scheme. Consider a continuous linear operatorA : X → Y between Banach spacesX

andY . We are interested in computing projections onto affine subspaces of the form

z +N (A) and z +R(A) ,

whereN (A) is the nullspace andR(A) is the closure of the range ofA. These projec-
tions are essential if one wants to iteratively approximate the minimum-norm solution
x† of

Ax = y .

In [20] we suggested to approximatex† by means of a nonlinear Landweber method

xn+1 = J∗
q

(

Jp(xn)− µnA∗Jr(Axn − y)
)

n = 0, 1, . . . , x0 = 0 .

HereJp, J∗
q , Jr are duality mappings of the corresponding Banach spaces. The step

sizeµn must be properly chosen in order to achieve convergence. We again refer to [20]
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for an exhaustive convergence and stability analysis of the method. As could have been
expected from results in Hilbert spaces the method showed good regularization prop-
erties but the convergence is tremendously slow. Hence the idea came upto use more
search directionsw∗

n rather than only using the single directionw∗
n = A∗Jr(Axn − y)

in order to get a faster iterative scheme. Following ideas of the well-knownCG-method
we compute a projection onto an affine subspaceU∗

n of R(A∗) in each iteration step.
An appropriate choice ofU∗

n accelerates the convergence significantly.
As projections we use metric and Bregman projections which are tightly connected by
the important relation

PC(x)− x = Πp
C−x(0) for all x ∈ X .

HereC is a closed, convex subset ofX, PC means the metric projection ontoC and
Πp

C−x the Bregman projection ontoC − x. Thus Bregman projections can be used to
compute metric projections.
The aim of this article is twofold. On the one hand we illuminate the connections
between Bregman and metric projections. We show known results and deduce new
relations. Moreover we demonstrate how metric and Bregman projectionscan be com-
puted numerically. On the other hand we expand ideas from sequential subspace opti-
mization techniques to accelerate the convergence of our iterative computation ofx†.
Sequential subspace optimization methods (SESOP) were considered byNARKISS,
ZIBULEVSKY [16] and ELAD ET. AL . [11] to solve large-scale unconstrained opti-
mization problems inRn. Details about affine subspaces applied in conjugate gradient
methods are contained in the article [22] of STOER, YUAN. A concise overview about
numerical optimization is given in the book [18] of NOCEDAL, WRIGHT. Compared
to the optimization techniques outlined in these references our subspace methods ex-
tend to arbitrary, but smooth Banach spaces which do not need to have finite dimension.
There is a prospective need for efficient solvers of operator equations in Banach spaces,
since a Banach space setting sometimes allows a more realistic modelling of problems
arising in applications from industry and natural sciences. Hence, the contents of the
paper are interesting not only from a theoretical point of view but also to tackle real
world problems. Moreover we point out that it is important to consider problems even
in infinite dimensional spaces, since a discretization always veils the natureof an in-
verse problem. By doing so we follow arguments which also DEUFLHARD [9] used to
construct solvers for nonlinear problems.
We give a brief summary of the paper’s subjects. In sections 2 and 3 wegive a short
survey of duality mappings, metric projections and Bregman projections induced by
powers of the norm. Such Bregman projections are also calledgeneralized projections,
see ALBER [2]. We characterize Bregman projections onto closed affine subspaces
and prove new relations between Bregman and metric projections (propositions 3.6,
3.7, 3.8, and 3.10). Our investigations lead to an extension of the recently established
decomposition theorems in ALBER [3], SONG, CAO [21] to the affine case. More
precisely, we show

X = U ⊕ J∗
q (z∗ + U⊥) ,

whereU ⊂ X is a closed subspace of a reflexive, smooth and strictly convex Banach
spaceX. The second part of the article starts with section 4 and consists of the de-
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velopment of sequential subspace optimization methods in Banach spaces followed by
some convergence results (propositions 4.1 and 4.2). The performance and advantages
of the method are finally demonstrated in section 5.

2. Duality Mappings

We recall the definition of duality mappings and some of their properties, allof which
can be found in the book of CIORANESCU[8]. Throughout the paperX is a real Banach
space with norm‖.‖ and dualX∗ and we write〈x∗|x〉 = x∗(x) for the application of
x∗ ∈ X∗ on x ∈ X. Moreover we always assumep, q ∈ (1,∞) to be conjugate such
that 1

p
+ 1

q
= 1.

Definition 2.1. The mappingJp : X −→ 2X∗

defined by

Jp(x) =
{

x∗ ∈ X∗
∣

∣ 〈x∗|x〉 = ‖x‖p , ‖x∗‖ = ‖x‖p−1} (2.1)

is theduality mappingof X with gauge functiont 7→ tp−1.

J2 is also called thenormalizedduality mapping. ByJ∗
p we denote a duality map-

ping of the dualX∗. In general duality mappings are set-valued and by the Hahn-
Banach theorem the setsJp(x) are not empty for allx ∈ X. By checking (2.1) we see
that the following mappings are indeed duality mappings.

Example 2.2.

(a) In a Hilbert space the normalized duality mapping is just the identity mapping.

(b) Forp ∈ (1,∞) we have

Jp(x)(t) = |x(t)|p−1 sign
(

x(t)
)

in Lp-function spaces and

(

Jp(x)
)

n
= |xn|

p−1 sign(xn)

in lp-sequence spaces, where sign(x) := x
|x| for 0 6= x ∈ R and sign(0) := 0.

(c) A single-valued selection of the normalized duality mapping in(Rn, ‖.‖∞) is
given by

(

0, . . . , 0, xk, 0, . . . , 0
)

∈ J2(x) ,

wherek is any index such that|xk| = ‖x‖∞.

(d) In (Rn, ‖.‖1) we may take

(

‖x‖1 sign(x1), . . . , ‖x‖1 sign(xN )
)

∈ J2(x) .
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The duality mappingJp is homogenousof degreep− 1, i.e.

Jp(λx) = |λ|p−1 sign(λ)Jp(x) for all x ∈ X , λ ∈ R , (2.2)

and duality mappings with different gaugesp, r ∈ (1,∞) differ only by a (non-constant)
factor

Jr(x) = ‖x‖r−pJp(x) . (2.3)

In fact duality mappings are subdifferentials of convex functions. A functionf : X −→
R is said to besubdifferentiableat a pointx ∈ X, if there exists anx∗ ∈ X∗, called
subgradientof f atx, such that

f(y)− f(x) ≥ 〈x∗ | y − x〉 for all y ∈ X . (2.4)

By ∂f(x) we denote the set of all subgradients off at x and the mapping∂f : X −→
2X∗

is called thesubdifferentialof f . Now letfp : X −→ R be the function

fp(x) =
1
p
‖x‖p , x ∈ X .

Then by the theorem of Asplund, see e.g. [8], we have

Jp = ∂fp .

As a consequence every duality mappingJp is monotone, i.e.

〈x∗ − y∗ |x− y〉 ≥ 0 for all x, y ∈ X , x∗ ∈ Jp(x) , y∗ ∈ Jp(y) .

In the following proposition smoothness and convexity of a Banach spaceX are
characterized by properties of the functionsfp andJp = ∂fp.

Proposition 2.3.

(a) X is strictly convex ifffp is strictly convex iffJp is strictly monotone, i.e.

〈x∗ − y∗ |x− y〉 > 0 for all x 6= y ∈ X , x∗ ∈ Jp(x) , y∗ ∈ Jp(y) .

(b) X is smooth ifffp is Gâteaux differentiable iffJp is single-valued. In this case we
have∂fp(x) = f ′

p(x) = Jp(x).
(c) X is uniformly convex ifffp is uniformly convex.
(d) X is uniformly smooth ifffp is uniformly Fŕechet differentiable on the unit sphere

iff Jp is single-valued and uniformly continuous on bounded sets.
(e) X is reflexive, strictly convex and smooth iffJp is bijective. And in this case we

have(Jp)−1 = J∗
q .

(f) If X is reflexive and smooth thenJp is norm-to-weak-continuous, i.e. sequences
converging in norm are mapped to weakly convergent sequences.
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Uniform smoothness implies reflexivity and smoothness, uniform convexity implies
reflexivity and strict convexity, and in finite dimensions the converse holds as well.
Moreover smoothness and convexity are dual concepts, i.e. a Banach spaceX is
uniformly smooth (uniformly convex) iff its dualX∗ is uniformly convex (uniformly
smooth) and in caseX is reflexive we also haveX is smooth (strictly convex) iffX∗ is
strictly convex (smooth).
It is known thatLp-, lp-spaces withp ∈ (1,∞) are uniformly smooth and uniformly
convex whereasL1, l1 andL∞, l∞ are neither smooth nor strictly convex.
We will show the convergence of the sequential subspace methods in spaces with a
q-smooth dual.X is said to beq-smoothif there exists a constantC > 0 such that

ρX(τ) ≤ C τ q for all τ ∈ [0,∞) ,

where the functionρX : [0,∞) −→ [0,∞) is themodulus of smoothnessof X, defined
by

ρX(τ) =
1
2

sup
{

‖x + y‖+ ‖x− y‖ − 2 : ‖x‖ = 1 , ‖y‖ ≤ τ
}

.

A Banach spaceX is said to be uniformly smooth iff

lim
τ→0

ρX(τ)

τ
= 0 .

Henceq-smooth spaces are especially uniformly smooth (recall thatq ∈ (1,∞)). It is
well known thatLp-, lp-spaces with 1< p ≤ 2 arep-smooth with

ρX(τ) ≤
1
p

τp

andLp-, lp-spaces withp ≥ 2 are 2-smooth with

ρX(τ) ≤
p− 1

2
τ2 .

For more information about geometry of Banach spaces we refer to CIORANESCU[8],
DIESTEL [10] , FIGIEL [12], L INDENSTRAUSSand TZAFRIRI [14]. The following in-
equality can be found in XU and ROACH [23]. It plays a central role in our convergence
proofs.

Proposition 2.4([23]). Let X beq-smooth. Then there exists a constantC > 0 such
that for all x, y ∈ X

1
q
‖x− y‖q ≤

1
q
‖x‖q − 〈Jq(x) | y〉+

C

q
‖y‖q . (2.5)

3. Metric and Bregman Projections

We are concerned with two different kind of projections: Metric projections and Breg-
man projections. The latter ones arise by minimizing a Bregman distance induced by
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powers of the norm, which are also calledgeneralized projectionsby ALBER [2]. We
recall some known facts and extend the existing theory by some further contributions.
Throughout this sectionX is supposed to be reflexive, smooth and strictly convex and
C 6= ∅ be a closed convex subset ofX. Recall that ifX is reflexive, smooth and strictly
convex, then this is valid for the dualX∗, too.

Definition 3.1. Themetric projectionof x ∈ X ontoC is the unique elementPC(x) ∈
C such that

‖x− PC(x)‖ = min
y∈C
‖x− y‖ . (3.1)

Obviously we havePC(x) = x ⇔ x ∈ C and thusP 2
C = PC andR(PC) = C,

where byR we denote the range of a mapping. The metric projection can also be
characterized by a variational inequality.

Proposition 3.2. Let Jp be any duality mapping ofX. Then an element̃x ∈ C is the
metric projection ofx ontoC iff

〈Jp(x̃− x) | y − x̃〉 ≥ 0 for all y ∈ C . (3.2)

The proof is done as in the case of the normalized duality mapping, which can
be found in LIONS [15], see also PENOT, RATSIMAHALO [19] for a more general
treatment of metric projections.
Bregman projections are defined as minimizers of Bregman distances which go back
to BREGMAN [6].
For a Ĝateaux differentiable convex functionf : X −→ R the function

∆f (x, y) := f(y)− f(x)− 〈f ′(x) | y − x〉 , x, y ∈ X (3.3)

is called theBregman distanceof x toy with respect to the functionf . Here we consider
Bregman distances with respect to the functionsfp(x) = 1

p
‖x‖p with f ′

p = Jp. In this
case (3.3) can be written as

∆p(x, y) =
1
q
‖x‖p − 〈Jp(x) | y〉+

1
p
‖y‖p . (3.4)

In Hilbert spaces we get

∆2(x, y) =
1
2
‖x− y‖2 .

Let us write∆∗
q for the Bregman distance in the dualX∗ with respect to the function

f∗
q (x∗) = 1

q
‖x∗‖q. Then it is easy to see that

∆p(x, y) = ∆∗
q

(

Jp(y), Jp(x)
)

.

In the next proposition we collect some properties of∆p. We only prove (e), because it
is new and we will need it in our convergence proof.

Proposition 3.3. For all x, y ∈ X and sequences(xn)n in X the following holds:
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(a) ∆p(x, y) ≥ 0 and∆p(x, y) = 0⇔ x = y.
(b) ∆p(−x,−y) = ∆p(x, y) and∆p(λx, λy) = λp∆p(x, y) for all λ ≥ 0.
(c) lim‖xn‖→∞ ∆p(xn, x) = ∞, i.e. the sequence(xn)n remains bounded if the se-

quence
(

∆p(xn, x)
)

n
is bounded.

(d) ∆p is continuous in both arguments. It is strictly convex, weakly lower semi-
continuous and Ĝateaux differentiable with respect to the second variable with
∂
∂y

∆p(x, y) = Jp(y)− Jp(x).

(e) LetX be uniformly convex. If(xn)n converges weakly tox and the sequence
(

∆p(y, xn)
)

n
converges to∆p(y, x) then(xn)n converges strongly tox.

Proof. [of (e)] The left hand side of

∆p(y, xn)− ∆p(y, x) + 〈Jp(y) |xn − x〉 =
1
p
‖xn‖

p −
1
p
‖x‖p

converges to zero and therefore so does the right hand side. Hence the sequence of
the norms

(

‖xn‖
)

n
converges to‖x‖. Together with the weak convergence of(xn)n to

x this implies the strong convergence of(xn)n to x in a uniformly convex space, see
CIORANESCU [8].
Concerning the proofs of (a), (c) and (d) we refer to ALBER [2] and SCHÖPFERet. al.
[20]. Part (b) is obvious.

Definition 3.4. TheBregman projectionof x ∈ X ontoC with respect to the function
fp(x) = 1

p
‖x‖p is the unique elementΠp

C(x) ∈ C such that

∆p

(

x, Πp
C(x)

)

= min
y∈C

∆p(x, y) . (3.5)

We also writeΠq for the Bregman projection in the dualX∗ with respect tof∗
q . Ob-

viously we haveΠp
C(x) = x⇔ x ∈ C and thus(Πp

C)2 = Πp
C andR(Πp

C) = C. Similar
to the metric projection Bregman projections can be characterized by a variational in-
equality, too. Moreover they have an important descent property with respect to the
Bregman distance. The proof of existence and uniqueness of the Bregman projection
as well as the proof of the next proposition are contained in ALBER, BUTNARIU [1].
There and e.g. in BAUSCHKE ET. AL . [4] as well as in BUTNARIU , RESMERITA [7]
the reader can gain more insight into Bregman distances and projections with respect
to more general functions than powers of the norm of a Banach space.

Proposition 3.5. An element̃x ∈ C is the Bregman projection ofx ontoC with respect
to the functionfp iff

〈Jp(x̃)− Jp(x) | y − x̃〉 ≥ 0 for all y ∈ C . (3.6)

Moreover this variational inequality is equivalent to

∆p(x̃, y) ≤ ∆p(x, y)− ∆p(x, x̃) for all y ∈ C . (3.7)
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In Hilbert spaces the Bregman projection with respect to the functionf2 coincides
with the metric projection. But in general they differ from each other, as an example
given in [1] demonstrates. In the same paper the authors asked whether in general
Banach spaces there is a relationship between metric and Bregman projections onto
closed convex sets. The following proposition gives answers.

Proposition 3.6.

(a) The Bregman projection and the metric projection are related via

PC(x)− x = Πp
C−x(0) for all x ∈ X . (3.8)

Especially we havePC(0) = Πp
C(0).

(b) The metric projection has the translation property

Py+C(x) = y + PC(x− y) for all x, y ∈ X . (3.9)

This property indeed distinguishes the metric from the Bregman projection since we
have

Πp
y+C(x) = y + Πp

C(x− y) for all x, y ∈ X

implying
Πp

y+C(x) = Py+C(x) for all x, y ∈ X .

(c) We have‖Πp
C(x)‖ ≤ ‖x‖ for all x ∈ X iff 0 ∈ C.

(d) The projections satisfy

Πp
λ C(λx) = λ Πp

C(x) and Pλ C(λx) = λPC(x) for every λ ∈ R .

Especially ifC is a cone, thenλC = C for λ > 0 and thus the projections onto
a cone are positively homogenous of degree1. Projections onto a symmetric cone,
i.e.−C = C, are homogenous of degree1.

(e) Suppose we knowΠp
C(x) and set

λx :=







1 , x = 0 or Πp
C(x) = 0

(

‖x‖
‖Πp

C
(x)‖

)

r−p
r−1

, otherwise
.

Then we obtain the Bregman projection ofx onto the setλxC with respect to the
functionfr (r > 1) via

Πr
λxC(x) = λxΠp

C(x) . (3.10)

Moreover ifx ∈ λxC thenx ∈ C. If C is a cone, then

Πr
C(x) = λxΠp

C(x) . (3.11)
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Proof. To see (a) we compare the variational inequalities (3.2) and (3.6) for ˜x ∈ C and
z̃ := x̃− x ∈ C̃ := C − x and obtain the equivalences:

〈Jp(x̃− x) | y − x̃〉 ≥ 0 for all y ∈ C

⇔ 〈Jp(x̃− x) | (y − x)− (x̃− x)〉 ≥ 0 for all y ∈ C

⇔ 〈Jp(z̃) | ỹ − z̃〉 ≥ 0 for all ỹ ∈ C̃ .

We show (b) by using (3.8):

Py+C(x) = x + Πp

(y+C)−x
(0) = y + (x− y) + Πp

C−(x−y)(0) = y + PC(x− y) .

Now let the Bregman projection fullfillΠp
y+C(x) = y + Πp

C(x − y) for all x, y ∈ X.
Then we get

Py+C(x) = x + Πp

−x+(y+C)(0) = x +
(

− x + Πp
y+C

(

0− (−x)
)

)

= Πp
y+C(x) .

(c) If 0 ∈ C then by takingy = 0 in (3.6) we get

0≥
〈

Jp

(

Πp
C(x)

) ∣

∣Πp
C(x)

〉

− 〈Jp(x) |Πp
C(x)〉 = ‖Πp

C(x)‖
p
− 〈Jp(x) |Πp

C(x)〉

and therefore

‖Πp
C(x)‖

p
≤ 〈Jp(x) |Πp

C(x)〉 ≤ ‖x‖p−1 ‖Πp
C(x)‖ ,

which yields‖Πp
C(x)‖ ≤ ‖x‖. Conversely if this inequality is valid for allx ∈ X then

for x = 0 we have‖Πp
C(0)‖ ≤ ‖0‖ = 0 and thus 0= Πp

C(0) ∈ C.
The homogeneity (d) is a consequence of proposition 3.3 (b) and (3.8), because

∆p

(

λx, λ Πp
C(x)

)

≤ ∆p(λx, λ y) for all x ∈ X,λ y ∈ λC

⇔ ∆p

(

x, Πp
C(x)

)

≤ ∆p(x, y) for all x ∈ X, y ∈ C

and thus also

Pλ C(λx) = λx + Πp
λ C−λ x(0) = λx + λ Πp

C−x(0) = λPC(x) .

(e) Due to the homogeneity of the duality mapping (2.2) and relation (2.3) we see that
for x 6= 0 andΠp

C(x) 6= 0 and ally ∈ C we have
〈

Jr

(

λxΠp
C(x)

)

− Jr(x)
∣

∣λxy − λxΠp
C(x)

〉

= λx

〈

λr−1
x ‖Πp

C(x)‖r−pJp

(

Πp
C(x)

)

− ‖x‖r−pJp(x)
∣

∣ y −Πp
C(x)

〉

= λx‖x‖
r−p

〈

Jp

(

Πp
C(x)

)

− Jp(x)
∣

∣ y −Πp
C(x)

〉

≥ 0 .

MoreoverΠr
C(0) = PC(0) = Πp

C(0) by (a) of this proposition and ifΠp
C(x) = 0 and

x 6= 0 then for ally ∈ C

〈Jr(0)− Jr(x) | y − 0〉 = ‖x‖r−p 〈Jp(0)− Jp(x) | y − 0〉 ≥ 0 .
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This proves the first part of (g).
Now let x be inλxC. Thenx = Πr

λxC(x) = λxΠp
C(x). If x = 0 or Πp

C(x) = 0 then
λx = 1 and thereforex = Πp

C(x) ∈ C. Otherwise we get

‖x‖ = λx‖Πp
C(x)‖ =

(

‖x‖

‖Πp
C(x)‖

)

r−p
r−1

‖Πp
C(x)‖ ,

which gives‖x‖ = ‖Πp
C(x)‖. Henceλx = 1 andx = Πp

C(x) ∈ C.

We characterize Bregman projections onto closed affine cones and closed affine sub-
spaces. See also ALBER [3] and SONG and CAO [21] for the non-affine case. In light
of prop. 3.6 (b) considering the affine case is meaningful. And in combination with
(3.8) this especially enables us to use the same iterative scheme to computemetric as
well as Bregman projections onto affine subspaces which are given viathe nullspace
or the range of a linear operator.
For a subspaceU ⊂ X the setU⊥ ⊂ X∗ is theannihilator of U

U⊥ := {x∗ ∈ X∗ | 〈x∗ |u〉 = 0 for every u ∈ U} ,

For a (convex) coneK ⊂ X the setK+ ⊂ X∗ is thedual coneof K

K+ := {x∗ ∈ X∗ | 〈x∗ | k〉 ≥ 0 for every k ∈ K}

andK◦ = −K+ is thepolar coneof K.

Proposition 3.7. Let U ⊂ X be a closed subspace,K ⊂ X be a closed cone and
x, y, z ∈ X be given.

(a) The following assertions are equivalent to each other:

(i) x = Πp
z+K(y),

(ii) x−z ∈ K and Jp(x)−Jp(y) ∈ K+ and 〈Jp(x)−Jp(y) |x−z〉 = 0,
(iii) Jp(x) = Πq

Jp(y)+K+ Jp(z).

(b) In case of a subspaceU the equivalencies read as

(i) x = Πp
z+U (y),

(ii) x− z ∈ U and Jp(x)− Jp(y) ∈ U⊥,
(iii) Jp(x) = Πq

Jp(y)+U⊥ Jp(z).

Proof. Assertion (b) is a consequence of (a), because a subspace is especially a cone
with U+ = U⊥. Let us prove (a) by the variational inequality (3.6). An elementx is
the Bregman projection ofy ontoz + K iff x− z ∈ K and

〈Jp(x)− Jp(y) | (z + k)− x〉 ≥ 0 for all k ∈ K

⇔ 〈Jp(x)− Jp(y) | z − x〉+ 〈Jp(x)− Jp(y) | k〉 ≥ 0 for all k ∈ K .(3.12)
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Suppose that〈Jp(x)− Jp(y) | k0〉 < 0 for somek0 ∈ K. SinceK is a cone we get
λ k0 ∈ K for all λ > 0 and thus by (3.12)

〈Jp(x)− Jp(y) | z − x〉+ λ 〈Jp(x)− Jp(y) | k0〉 ≥ 0 for all λ > 0 .

But then the left hand side converges to−∞ for λ→∞, which leads to a contradiction.
Therefore inequality (3.12) can be fulfilled for allk ∈ K only if

〈Jp(x)− Jp(y) | k〉 ≥ 0 for all k ∈ K ,

i.e. if Jp(x)−Jp(y) ∈ K+. Sincex− z ∈ K this implies〈Jp(x)− Jp(y) |x− z〉 ≥ 0.
But by choosingk = 0 in (3.12) we also get〈Jp(x)− Jp(y) | z − x〉 ≥ 0 and thus
〈Jp(x)− Jp(y) |x− z〉 = 0. Hence (i)⇒ (ii). And since (ii) implies the validity of
(3.12) we also have (ii)⇒ (i). Finally by the equality(K+)+ = K it follows that (ii)
⇔ (iii) is just assertion (ii)⇔ (i) in the dual space.

By means of these characterizations we are able to deduce the affine version of the
decomposition theorems established in ALBER [3] and SONG, CAO [21]. See also

Proposition 3.8. Let U ⊂ X be a closed subspace,K ⊂ X be a closed cone and
z∗ ∈ X∗ be given..

(a) X can be decomposed intoX = K ⊕ J∗
q (z∗ + K◦) , i.e. everyx ∈ X can be

uniquely written in the form

x = xK + J∗
q (x∗

z∗+K◦)

with xK ∈ K, x∗
z∗+K◦ ∈ z∗ + K◦ and〈x∗

z∗+K◦ − z∗ |xK〉 = 0. More precisely we
have

xK = x−Πp
x−K J∗

q (z∗) and x∗
z∗+K◦ = Πq

z∗+K◦ Jp(x) .

If z∗ = 0 thenxK = PK(x).
(b) X can be decomposed intoX = U ⊕ J∗

q (z∗ + U⊥) , i.e. everyx ∈ X can be
uniquely written in the form

x = xU + J∗
q (x∗

z∗+U⊥)

with xU ∈ U andx∗
z∗+U⊥ ∈ z∗ + U⊥. More precisely we have

xU = x−Πp
x+U J∗

q (z∗) and x∗
z∗+U⊥ = Πq

z∗+U⊥ Jp(x) .

If z∗ = 0 thenxU = PU (x).

Proof. We only prove (a) since again (b) follows from (a). We set

x∗
z∗+K◦ := Πq

z∗+K◦ Jp(x) ∈ z∗ + K◦ and xK := x−Πp
x−K J∗

q (z∗) ∈ K .

By proposition 3.7 (a) and(−K)+ = K◦ we have

J∗
q (x∗

z∗+K◦) = J∗
q Πq

z∗+K◦ Jp(x) = Πp
x−K J∗

q (z∗)



12 F. Scḧopfer, T. Schuster, and A.K. Louis

with
〈

x∗
z∗+K◦ − z∗

∣

∣ J∗
q (x∗

z∗+K◦)− x
〉

= 0 and thus

x =
(

x− J∗
q (x∗

z∗+K◦)
)

+ J∗
q (x∗

z∗+K◦) = xK + J∗
q (x∗

z∗+K◦)

with
〈

x∗
z∗+K◦ − z∗

∣

∣xK

〉

= 0.
The decomposition is unique, because ifx = xK + J∗

q (x∗
z∗+K◦) with somexK ∈ K,

x∗
z∗+K◦ ∈ z∗ + K◦ and〈x∗

z∗+K◦ − z∗ |xK〉 = 0 then we have

J∗
q (x∗

z∗+K◦)− J∗
q

(

Jp(x)
)

= −xK ∈ −K = (K◦)+

and
〈

x∗
z∗+K◦ − z∗

∣

∣ J∗
q (x∗

z∗+K◦)− J∗
q

(

Jp(x)
)〉

= −〈x∗
z∗+K◦ − z∗, |xK〉 = 0 .

Applying proposition 3.7 (a) we conclude that indeedx∗
z∗+K◦ = Πq

z∗+K◦ Jp(x) and

xk = x− J∗
q (x∗

z∗+K◦) = x− J∗
q Πq

z∗+K◦ Jp(x) = x−Πp
x−K J∗

q (z∗) .

We continue by showing how far results concerning orthogonal projections in Hilbert
spaces can be carried over to Bregman projections onto affine subspaces. So far we do
not know whether similar results can be formulated for the metric projection, too, un-
less proposition 3.10 (b), which has been proven for the metric projection for z = 0 in
ALBER [3].

Lemma 3.9. LetU ⊂ X be a closed subspace andz ∈ X be given. Then

R
(

Jp(.)− Jp Πp
z+U (.)

)

= U⊥ .

Proof. By prop. 3.7 (b) we have for allx ∈ X

Jp(x)− Jp Πp
z+U (x) = Jp(x)−Πq

Jp(x)+U⊥ Jp(z) ∈ U⊥ .

Conversely fory∗ ∈ U⊥ we setJp(x) := y∗ + Πq

U⊥ Jp(z) ∈ U⊥ and get

Jp(x)−Πq

Jp(x)+U⊥ Jp(z) = Jp(x)−Πq

U⊥ Jp(z) = y∗ .

Proposition 3.10. Let U, V ⊂ X be closed subspaces andz ∈ X be given. The fol-
lowing assertions hold true.

(a) We haveΠp
z+U (x) = Πp

z+U (y) iff Jp(x)− Jp(y) ∈ U⊥.
(b) The Bregman projectionΠp

z+U is Jp(.)− Jp(z)-positive, i.e.

〈Πp
z+U (x)− z |Jp(x)− Jp(z)〉 ≥ 0 for all x ∈ X .

(c) Πp
z+U Πp

z+V = Πp
z+U ⇔ U ⊂ V .
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(d) The compositionΠp
z+U Πp

z+V is again a Bregman projectionΠp
M onto some closed

affine subspaceM ⊂ X iff

R(Πp
z+U Πp

z+V ) ⊂ z + U ∩ V .

In this case we haveΠp
z+U Πp

z+V = Πp
z+U∩V .

(e) LetΠ : X −→ X be any mapping with the properties

(i) Π(x) = Π(y)⇔ Jp(x)− Jp(y) ∈ U⊥,
(ii) Π2 = Π,
(iii) Π(.)− z is Jp(.)− Jp(z)-positive.

ThenΠ = Πp
z+U . Hence (i)-(iii) characterize Bregman projections onto closed

affine subspaces.
(f) The sumΠp

z+U (.) + Πp
z+V (.) − z is again a Bregman projectionΠp

M onto some
closed affine subspaceM ⊂ X iff

∆p(z, z + u + v) = ∆p(z, z + u) + ∆p(z, z + v) for all u ∈ U , v ∈ V . (3.13)

And in this case we haveΠp
z+U (.) + Πp

z+V (.)− z = Πp
z+U+V (.).

Proof. (a) We set ˜x := Πp
z+U (x). If Πp

z+U (y) = x̃ then by applying part (b) of propo-
sition 3.7 we get

Jp(x)− Jp(y) =
(

Jp(x)− Jp(x̃)
)

+
(

Jp(x̃)− Jp(y)
)

∈ U⊥ + U⊥ = U⊥ .

Conversely ifJp(x)− Jp(y) ∈ U⊥ then

Jp(x̃)− Jp(y) =
(

Jp(x̃)− Jp(x)
)

+
(

Jp(x)− Jp(y)
)

∈ U⊥ + U⊥ = U⊥ ,

and since ˜x− z ∈ U we again by proposition 3.7 (b) conclude that ˜x = Πp
z+U (y).

(b) The Bregman projectionΠp
z+U is indeedJp(.) − Jp(z)-positive, because applying

the decomposition in prop. 3.8 (b) toJp(x) ∈ X∗ = U⊥⊕Jp(z +U) together with the
monotonicity of the duality mapping yields

〈Πp
z+U (x)− z |Jp(x)− Jp(z)〉 = 〈Πp

z+U (x)− z |Jp Πp
z+U (x)− Jp(z)〉 ≥ 0 .

To prove (c) we consider the following

Πp
z+U Πp

z+V (x) = Πp
z+U (x) for every x ∈ X

⇔ Jp(x)− Jp Πp
z+V (x) ∈ U⊥ for every x ∈ X

⇔ V ⊥ ⊂ U⊥ .

The first equivalence is satisfied due to (a) and the second one is valid because of
lemma 3.9.
(d) For allx ∈ X we have

Jp(x)−Jp Πp
z+U Πp

z+V (x) = Jp(x)−Jp Πp
z+V (x)+Jp Πp

z+V (x)−Jp Πp
z+U Πp

z+V (x) .
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By lemma 3.9 the right hand side lies inV ⊥ +U⊥ ⊂ (U ∩V )⊥ and by (a) we conclude
that

Πp
z+U∩V (x) = Πp

z+U∩V Πp
z+U Πp

z+V (x) .

In caseR(Πp
z+U Πp

z+V ) ⊂ z + U ∩ V we have

Πp
z+U∩V Πp

z+U Πp
z+V (x) = Πp

z+U Πp
z+V (x)

yielding
Πp

z+U∩V (x) = Πp
z+U Πp

z+V (x) .

Now suppose thatΠp
z+U Πp

z+V = Πp
M for some closed affine subspaceM ⊂ X. Then

we obviously have
z + U ∩ V ⊂M ⊂ z + U .

Especially we getz ∈M and thereforeM = z+W for some closed subspaceW ⊂ X.
Hence

Πp
z+W Πp

z+V = Πp
M Πp

z+V = Πp
z+U Πp

z+V Πp
z+V = Πp

z+U Πp
z+V = Πp

M = Πp
z+W

and by (c) we conclude thatW ⊂ V and thusM = z + W ⊂ z + V . We finally arrive
at

z + U ∩ V ⊂M ⊂ (z + U) ∩ (z + V ) = z + U ∩ V ,

from which we infer thatM = z + U ∩ V .
(e) We observe that (i) and (ii) imply thatJp(x)−Jp Π(x) ∈ U⊥ for all x ∈ X. Writing

Jp(x) =
(

Jp(x)− Jp Π(x)
)

+ Jp Π(x)

and keeping in mind the uniqueness of the decomposition in proposition 3.8 (b) we see
that in order to showΠ(x) = Πp

z+U (x) it suffices to showΠ(x)− z ∈ U . Let y∗ ∈ U⊥

be arbitrary. Then by (iii), (i) and (ii) we deduce

0 ≤
〈

Π J∗
q

(

y∗ + Jp Π(x)
)

− z
∣

∣

(

y∗ + Jp Π(x)
)

− Jp(z)
〉

=
〈

Π
(

Π(x)
)

− z
∣

∣ y∗ + Jp Π(x)− Jp(z)
〉

= 〈Π(x)− z | y∗ + Jp Π(x)− Jp(z)〉

= 〈Π(x)− z | y∗〉+ 〈Π(x)− z |Jp Π(x)− Jp(z)〉 .

Sincey∗ ∈ U⊥ is arbitrary this implies〈Π(x)− z | y∗〉 = 0 for all y∗ ∈ U⊥. Hence
Π(x)− z ∈ (U⊥)⊥ = U .
(f) Suppose thatΠp

z+U (.) + Πp
z+V (.) − z = Πp

M (.). We at first show that in this case
we must haveΠp

M = Πp
z+U+V and to this end we check (i)-(iii) in (e). (ii) is obvious

and (iii) holds because

Πp
M (.)− z = Πp

z+U (.)− z + Πp
z+V (.)− z

is Jp(.)− Jp(z)-positive. To see (i) we at first showU ∩ V = {0}. For anyx ∈ U ∩ V

we getΠp
M (z + x) = (z + x) + (z + x)− z = z + 2x and thus

z + 2x = Πp
M (z + x) = Πp

M Πp
M (z + x) = Πp

M (z + 2x) = z + 4x .
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Hencex = 0 and thereforeU ∩ V = {0}. With this and (a) we get

Πp
M (x) = Πp

M (y)

⇔ U ∋ Πp
z+U (x)−Πp

z+U (y) = Πp
z+V (y)−Πp

z+V (x) ∈ V

⇔ Πp
z+U (x)−Πp

z+U (y) = 0 and Πp
z+V (y)−Πp

z+V (x) = 0

⇔ Jp(x)− Jp(y) ∈ U⊥ ∩ V ⊥ = (U + V )⊥ .

By (e) we conclude thatΠp
M = Πp

z+U+V
and sinceR(Πp

M ) ⊂ z + U + V we finally
getΠp

M = Πp
z+U+V .

It remains to show (3.13). Letu ∈ U , v ∈ V be arbitrary. According to proposition
3.3 (d) the functionf(t) := ∆p(z, z + t u + v)− ∆p(z, z + t u), t ∈ R is differentiable
with

f ′(t) = 〈Jp(z + t u + v)− Jp(z + t u) |u〉 .

Since we have for allu ∈ U , v ∈ V

Πp
z+U (z + u + v) + Πp

z+V (z + u + v)− z = z + u + v

⇒ U ∋ z + u−Πp
z+U (z + u + v) = Πp

z+V (z + u + v)− z − v ∈ V

⇒ z + u−Πp
z+U (z + u + v) = 0

⇒ Jp(z + u + v)− Jp(z + u) ∈ U⊥ ,

we conclude thatf ′(t) = 0. Hencef is constant and we get

∆p(z, z + u + v)− ∆p(z, z + u) = f(1) = f(0) = ∆p(z, z + v) .

Conversely suppose that (3.13) holds. Then for allu,w ∈ U , v ∈ V and with

g(t) := ∆p(z, z + u + t w + v) = ∆p(z, z + u + t w) + ∆p(z, z + v)

we get

〈Jp(z + u + v)− Jp(z) |w〉 = g′(0) = 〈Jp(z + u)− Jp(z) |w〉

and consequentlyJp(z + u + v)− Jp(z + u) ∈ U⊥. That also provesJp(z + u + v)−
Jp(z + v) ∈ V ⊥ and thusJp(z + u)− Jp(z) ∈ V ⊥. Forx ∈ U ∩ V we then get

0 = 〈Jp(z + x)− Jp(z) |x〉 = 〈Jp(z + x)− Jp(z) | (z + x)− z〉

and by the strict monotonicity ofJp we conclude thatz + x = z whencex = 0 and
thusU ∩ V = {0}.
In a similar way we check (i)-(iii) in (e) in order to show thatΠ = Πp

z+U+V for Π(x) :=
Πp

z+U (x) + Πp
z+V (x)− z.

Relation (3.13) can also be written in the form

‖z + u + v‖p + ‖z‖p = ‖z + u‖p + ‖z + v‖p for all u ∈ U , v ∈ V . (3.14)
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In Hilbert spaces this is equivalent toU⊥V if p = 2. But in general (3.14) seems to
be stronger than requiringJp(U) ⊂ V ⊥ andJp(V ) ⊂ U⊥. Because of the pointwise
(componentwise) definition of the duality mapping InLp- (lp-) spaces (3.14) is satisfied
if the powerp is the same number as thep definingLp (lp) and ifz and allu ∈ U , v ∈ V

are functions (vectors) with pairwise disjoint support. Combining this with proposition
3.7 (b) we obtain the following examples.

Example 3.11.

(a) For anyu ∈ X we have

Πp

span{u}(x) =
|〈Jp(x) |u〉|q−1

‖u‖q
sign(〈Jp(x) |u〉)u .

(b) In (R3, ‖.‖p) for U := span{(0, 0, 1)} andV := span{(1, 1, 0)} we get

Πp
U+V

(

(x1, x2, x3)
)

= (0, 0, x3) +
|φ(x1, x2)|q−1

2q−1 sign(φ(x1, x2)) (1, 1, 0)

with
φ(x1, x2) := |x1|

p−1 sign(x1) + |x2|
p−1 sign(x2) .

In the next proposition we show how Bregman projections onto a special kind of
affine subspaces, namely finite intersections of hyperplanes, can be computed via solv-
ing a finite dimensional optimization problem. The subproblems we have to solve in
the sequential subspace optimization methods will be of such a form.
For 0 6= u∗ ∈ X∗ andα ∈ R we denote byH(u∗, α) thehyperplane

H(u∗, α) := {x ∈ X | 〈u∗ |x〉 = α} .

Proposition 3.12. LetH(u∗
1, α1), . . . ,H(u∗

N , αN ) be hyperplanes in a reflexive, smooth
and strictly convex Banach spaceX such that the intersection

H :=
N
⋂

k=1

H(u∗
k, αk)

is not empty. Forx0 ∈ X let h : R
N −→ R be the convex function

h(t) :=
1
q

∥

∥

∥

∥

∥

Jp(x0)−
N
∑

k=1

tk u∗
k

∥

∥

∥

∥

∥

q

+
N
∑

k=1

tk αk , t = (t1, . . . , tN ) ∈ R
N

with continuous partial derivatives

∂jh(t) = −

〈

u∗
j

∣

∣

∣

∣

∣

J∗
q

(

Jp(x0)−
N
∑

k=1

tk u∗
k

)〉

+ αj , j = 1, . . . , N .
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Then the Bregman projection ofx0 ontoH is given by

Πp
H(x0) = J∗

q

(

Jp(x0)−
N
∑

k=1

t̃k u∗
k

)

,

wheret̃ = (t̃1, . . . , t̃N ) is a solution of theN -dimensional optimization problem

min
t∈RN

h(t) . (3.15)

Moreover if the vectorsu∗
1, . . . , u

∗
N are linearly independent thenh is strictly convex

and t̃ is unique.

Proof. Convexity ofh is obvious, differentiability and continuity of the partial deriva-
tives are consequences of parts (b), (e) and (f) of proposition 2.3. For anyz ∈ H we
can write

H = z +
(

span{u∗
1, . . . , u

∗
N}
)⊥

.

Thus in view of proposition 3.7 (b) an element ˜x ∈ X is the Bregman projection ofx0

ontoH iff x̃ ∈ H andJp(x̃) ∈ Jp(x0) + span{u∗
1, . . . , u

∗
N}, i.e.

Jp(x̃) = Jp(x0)−
N
∑

k=1

t̃k u∗
k

with somet̃1, . . . , t̃N ∈ R such that〈u∗
k | x̃〉 = αk for all k = 1, . . . , N . The coefficients

t̃k are uniquely determined in case the vectorsu∗
1, . . . , u

∗
N are linearly independent.

This is equivalent to

Jp(x̃) = Πq

Jp(x0)+span{u∗

1 ,...,u∗

N
}
Jp(z) ,

i.e. t̃ = (t̃1, . . . , t̃N ) ∈ R
N is a solution of the optimization problem

min
t∈RN

∆∗
q

(

Jp(z), Jp(x0)−
N
∑

k=1

tk u∗
k

)

= min
t∈RN

1
p
‖z‖p − 〈z |Jp(x0)〉+

N
∑

k=1

tk 〈z |u
∗
k〉+

1
q

∥

∥

∥

∥

∥

Jp(x0)−
N
∑

k=1

tk u∗
k

∥

∥

∥

∥

∥

q

,

which in turn is equivalent to (3.15) since〈z |u∗
k〉 = αk for z ∈ H.

Due to the nice properties of the functionh, which is strictly convex and contin-
uously differentiable with known partial derivatives, the optimization problem (3.15)
can be efficiently solved by standard optimization routines like Newton’s method, non-
linear conjugate gradient or variable metric methods, see e.g. JARRE, STOER [13] or
NOCEDAL [17] for an overview.
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4. Sequential Subspace Optimization Methods

Let A : X → Y be a continuous linear operator between Banach spacesX, Y and
A∗ : Y ∗ → X∗ be its adjoint. We are interested in computing projections onto affine
subspaces of the form

z +N (A) and z +R(A) ,

whereN (A) is the nullspace andR(A) is the closure of the range ofA. At first we
observe that it suffices to know a procedure to compute Bregman projections onto sets
of the formz +N (A), because in light of (3.8) and proposition 3.7 (b) we have

Pz+N (A)(x) = x + Πp

z−x+N (A)(0) ,

Πp

z+R(A)
(y) = J∗

q Πq

J(y)+N (A∗) J(z) ,

P
z+R(A)

(y) = y + Πp

z−y+R(A)
(0) = y + J∗

q Πq

N (A∗) J(z − y) .

Furthermore ifz ∈ X is any solution of the operator equationAx = y for some given
y ∈ R(A) then we can also write

z +N (A) = MAx=y := {x ∈ X |Ax = y} .

Hence solving the constraint optimization problem

minf(x) s.t. Ax = y

with f(x) = ‖x0 − x‖ (f(x) = ∆p(x0, x)) is equivalent to computing the metric pro-
jection (Bregman projection) ofx0 ∈ X onto the setMAx=y. The elementPMAx=y

(0)
is also called theminimum norm solutionof the operator equationAx = y.
In SCHÖPFERet. al. [20] we have already analyzed a generalization of the well-known
Landweber method for the computation of minimum-norm solutions of linearoperator
equations in Banach spaces. The iteration method reads as

xn+1 = J∗
q

(

Jp(xn)− tnA∗Jr(Axn − y)
)

n = 0, 1, . . . x0 = 0 (4.1)

with appropriately chosen parameterstn. We have shown the strong convergence of the
method for smooth and uniformly convexX and arbitrary Banach spacesY as well as
its regularizing properties in case of noisy datayδ and disturbedAη by applying a dis-
crepancy principle. The method turned out to have good regularizing properties but the
convergence is rather slow. InterpretingA∗Jr(Axn−y) as a search direction and adopt-
ing ideas from sequential subspace optimization methods, see NARKISS, ZIBULEVSKY

[16], NOCEDAL, WRIGHT [18], STOER, YUAN [22]), we propose a modification of
this method to accelerate convergence. We shortly motivate our approach.
One step towards proving the convergence of the above method was to show that the
parameterstn can always be chosen in such a way that the sequence of the Bregman
distances of the iterates to potential solution pointsz ∈ MAx=y is decreasing suffi-
ciently, i.e.

∆p

(

xn+1(tn), z
)

≤ ∆p(xn, z)− Sn
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with someSn > 0. After a short calculation this can be seen to be equivalent to

1
q
‖Jp(xn)− tn A∗Jr(Axn − y)‖

q
+ tn 〈Jr(Axn − y) | y〉 ≤

1
q
‖xn‖

p − Sn .

The important thing is that this relation is independent of the in general unknown points
z. Hence astn we might as well take the minimizer of the functional

hn(t) :=
1
q
‖Jp(xn)− tA∗w∗

n‖
q
+ t 〈w∗

n | y〉 , t ∈ R

with w∗
n := Jr(Axn − y). In view of proposition 3.12 this just means that we obtain

the next iteratexn+1 by computing the Bregman projection ofxn onto the hyperplane
Hn := H

(

A∗w∗
n, 〈w∗

n | y〉
)

, which contains the set of potential solutionsMAx=y be-
cause〈A∗w∗

n | z〉 = 〈w
∗
n | y〉 for z ∈MAx=y. Rather than using a single search direction

A∗w∗
n in each iteration a finite-dimensional search space

U∗
n = span{A∗w∗

n,1, . . . , A
∗w∗

n,Nn
} ⊂ R(A∗)

is used so that we minimize

hn(t1, . . . , tNn
) :=

1
q

∥

∥

∥

∥

∥

Jp(xn)−
Nn
∑

k=1

tk A∗w∗
k

∥

∥

∥

∥

∥

q

+
Nn
∑

k=1

tk 〈w
∗
k | y〉 .

to get a vector of step sizes(µn,1, . . . , µn,Nn
). That means that we projectxn onto

Hn :=
Nn
⋂

k=1

H
(

A∗w∗
k, 〈w∗

k | y〉
)

⊃ MAx=y

by iterating

xn+1 = J∗
q

(

Jp(xn)−
Nn
∑

k=1

µn,k A∗w∗
n,k

)

, n = 0, 1, . . .

Since we already know that the directionA∗Jr(Axn − y) assures convergence,U∗
n

should contain that direction. Furthermore, in order to guarantee that thenew iterate re-
mains optimal with respect to the old search spaceU∗

n−1 and the optimization achieved
so far is not spoiled by searching in new directions, we chooseU∗

n−1 ⊂ U∗
n ⊂ R(A∗)

implying Hn−1 ⊃ Hn ⊃ MAx=y. Doing so we hope that already after a relatively
small number of iterationsn the setHn is a good approximation toMAx=y.

In the following X is assumed to be smooth withq-smooth dual, which implies
that X is reflexive and uniformly convex, whereasY is allowed to be an arbitrary
Banach space. If the duality mappingJr of Y is set-valued then we also writeJr(y)
for an arbitrary but fixed element in the setJr(y). To compute the Bregman projection
Πp

MAx=y
(x0) of x0 ∈ X onto the setMAx=y for some giveny ∈ R(A) we consider the

following sequential subspace optimization method.
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Method 1.

(S0) Takex0 as initial value, setn := 0, U∗
−1 := {0} and repeat the following steps:

(S1) IfRn := ‖Axn − y‖ = 0 then STOP else goto (S2).
(S2) Choose the search spaceU∗

n ⊂ R(A∗) andNn search directionsA∗w∗
n,k ∈ U∗

n,
k = 1, . . . , Nn, such that

A∗Jr(Axn − y) ∈ U∗
n and U∗

n−1 ⊂ U∗
n = span{A∗w∗

n,1, . . . , A
∗w∗

n,Nn
} .

(S3) Compute the new iterate:

xn+1 := J∗
q

(

Jp(xn)−
Nn
∑

k=1

µn,k A∗w∗
n,k

)

, (4.2)

whereµn = (µn,1, . . . , µn,Nn
) is a solution of theNn-dimensional optimization

problem
min

t∈RNn

hn(t)

with

hn(t) :=
1
q

∥

∥

∥

∥

∥

Jp(xn)−
Nn
∑

k=1

tk A∗w∗
n,k

∥

∥

∥

∥

∥

q

+
Nn
∑

k=1

tk 〈w
∗
n,k | y〉 .

(S4) Setn← n + 1 and goto (S1).

A natural choice forU∗
n fulfilling the requirements in (S2) is

U∗
n = span{A∗Jr(Ax0− y), . . . , A∗Jr(Axn − y)} .

Proposition 4.1. Method 1 either stops after a finite numbern∗ of iterations in case
Rn∗ = 0 wherexn∗ = Πp

MAx=y
(x0) or the sequence(xn)n converges strongly to

Πp
MAx=y

(x0). Moreover the following holds:

(a) For Hn :=
Nn
⋂

k=1

H
(

A∗w∗
n,k, 〈w∗

n,k | y〉
)

and all z ∈MAx=y we have

MAx=y ⊂ Hn ⊂ Hn−1 , xn+1 = Πp
Hn

(x0) , Jp(xn+1) = Πq

Jp(x0)+U∗
n

Jp(z) .

(b) We have
〈

w∗
n,k

∣

∣

∣
Axn+1− y

〉

= 0 for all k = 1, . . . , Nn.

(c) For all z ∈MAx=y the estimate

∆p(xn+1, z) ≤ ∆p(xn, z)−
Rp

n

pCp−1‖A‖p
,

is valid, which can also be expressed in terms of the functionhn by

hn(tn) ≤ hn(0)−
Rp

n

pCp−1‖A‖p
,

whereC > 0 is the constant appearing in(2.5) for theq-smooth dualX∗.
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Proof. To see thatMAx=y ⊂ Hn we pick anyz ∈MAx=y and get for allk = 1, . . . , Nn

〈A∗w∗
n,k | z〉 = 〈w

∗
n,k |Az〉 = 〈w∗

n,k | y〉 .

Recalling thatU∗
n−1 ⊂ U∗

n this implies

Hn = z + (U∗
n)⊥ ⊂ z + (U∗

n−1)
⊥ = Hn−1 .

Computing the new iterate via solving min
t∈RNn

hn(t) we get for allj = 1, . . . , Nn

0 = ∂jhn(tn) = −

〈

A∗w∗
n,j

∣

∣

∣

∣

∣

J∗
q

(

Jp(xn)−
Nn
∑

k=1

tn,k A∗w∗
n,k

)〉

+
〈

w∗
n,j

∣

∣ y
〉

= −
〈

w∗
n,j

∣

∣Axn+1− y
〉

. (4.3)

Proposition 3.12 then yieldsxn+1 = Πp
Hn

(xn). Applying proposition 3.7 (b) andHn =

z + (U∗
n)⊥ for anyz ∈MAx=y ⊂ Hn we furher get

Jp(xn+1) = Πq

Jp(xn)+U∗
n

Jp(z) .

Inductively this leads to

Jp(xn) + U∗
n = Jp(x0) + U∗

n

by (4.2) and finally we get

Jp(xn+1) = Πq

Jp(x0)+U∗
n

Jp(z) .

Hence we indeed havexn+1 = Πp
Hn

(x0) and (a) is proven.
Part (b) follows from (4.3).
It remains to prove (c) and the convergence statement. As shown above we have

Jp(xn)− Jp(x0) ∈ U∗
n ⊂ R(A) = N (A)⊥ .

In caseRn∗ = 0 for somen∗ we havexn∗ ∈ MAx=y and by proposition 3.7 (b) we
conclude thatxn∗ = Πp

MAx=y
(x0), i.e. we are done.

Thus, let us assumeRn 6= 0 for all n ∈ N and letz ∈ MAx=y be arbitrary. We will at
first establish the monotonicity estimate

∆p(xn+1, z) ≤ ∆p(xn, z)−
Rp

n

pCp−1‖A‖p
< ∆p(xn, z) .

Since the search spaceU∗
n is chosen such that it containsA∗Jr(Axn − y) we have for

all µ̄ ≥ 0
Jp(xn)− µ̄ A∗Jr(Axn − y) ∈ Jp(xn) + U∗

n .
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Together withJp(xn+1) = Πq

Jp(xn)+U∗
n

Jp(z) we get

∆p(xn+1, z) = ∆∗
q

(

Jp(z), Jp(xn+1)
)

≤ ∆∗
q

(

Jp(z), Jp(xn)− µ̄ A∗Jr(Axn − y)
)

=
1
p
‖z‖p − 〈Jp(xn) | z〉+ µ̄ 〈Jr(Axn − y) | y〉

+
1
q
‖Jp(xn)− µ̄ A∗Jr(Axn − y)‖q .

We estimate the last summand by (2.5) and with‖A∗‖ = ‖A‖ we obtain

∆p(xn+1, z) ≤
1
p
‖z‖p − 〈Jp(xn) | z〉+ µ̄ 〈Jr(Axn − y) | y〉

+
1
q
‖xn‖

p − µ̄ 〈Jr(Axn − y) |Axn〉

+
C

q
µ̄q‖A‖q‖Axn − y‖(r−1)q

= ∆p(xn, z)− µ̄Rr
n +

C

q
µ̄q‖A‖qR(r−1)q

n .

The right hand side of the above inequality is easy to minimize as a function ofµ̄ by
setting its derivative equal to zero, which yields

µ̄q−1 =
Rr

n

C‖A‖qR
(r−1)q
n

⇔ µ̄ =
Rp−r

n

Cp−1‖A‖p
. (4.4)

Inserting this ¯µ we arrive at the announced monotonicity estimate

∆p(xn+1, z) ≤ ∆p(xn, z)−
Rp

n

pCp−1‖A‖p
< ∆p(xn, z) .

Hence(Rn)n converges to zero and the sequence
(

∆p(xn, z)
)

n
is strictly decreasing.

Proposition 3.3 (c) assures that the sequence(xn)n remains bounded. To prove the
convergence of(xn)n to Πp

MAx=y
(x0) it suffices to show that every subsequence has

in turn a subsequence converging strongly toΠp
MAx=y

(x0). Let (xnk
)k be an arbitrary

subsequence. Since it is bounded we may assume that it converges weakly to some
x̃ ∈ X, and since the mappingx 7→ ‖Ax−y‖ is weakly lower semicontinuous we have

‖Ax̃− y‖ ≤ lim inf
k→∞

‖Axnk
− y‖ = lim inf

k→∞
Rnk

= 0 ,

whence ˜x ∈ MAx=y. Now we use the weak lower semicontinuity of∆p in the second
argument, as stated in proposition 3.3 (d) and the already proven relations of part (a)

xnk
= Πp

Hnk−1
(x0) and Πp

MAx=y
(x0) ∈MAx=y ⊂ Hnk−1 ,
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to arrive at

∆p

(

x0, Πp
MAx=y

(x0)
)

≤ ∆p(x0, x̃)

≤ lim inf
k→∞

∆p(x0, xnk
) ≤ lim sup

k→∞
∆p(x0, xnk

)

≤ ∆p

(

x0, Πp
MAx=y

(x0)
)

.

From this we infer that the sequence
(

∆p(x0, xnk
)
)

k
converges and that its limit is

equal to
∆p

(

x0, Πp
MAx=y

(x0)
)

= ∆p(x0, x̃) .

Since the Bregman projection is unique we must have ˜x = Πp
MAx=y

(x0). Finally by
means of proposition 3.3 (e) we conclude that(xnk

)k indeed converges strongly to
Πp

MAx=y
(x0).

Although we have restricted ourselves here to the case of aq-smooth dual, conver-
gence can also be proven for the general case of a uniformly smooth dual with similar
techniques as in BONESKY ET. AL . [5], where we analyzed iteration methods for the
minimization of Tikhonov functionals in Banach spaces.
We emphasize that the costly application of the operatorsA andA∗ has to be done
only in step (S2) but not in (S3). Therefore the numerical effort to solve the minimiza-
tion problems in (S3) will be significantly minor as long as the dimensionNn is low.
It may therefore be more reasonable to drop the requirementUn−1 ⊂ U∗

n, which to-
gether withA∗Jr(Axn − y) ∈ U∗

n implies thatNn increases, and bound the dimension
Nn. However our proof of the strong convergence essentially relied on therequirement
Un−1 ⊂ U∗

n. Nevertheless we still get the following, weaker result.

Proposition 4.2. Consider method 1 when for the choice of the search spaceU∗
n in

(S2)we only demand that it containsA∗Jr(Axn − y) and that the dimensionNn does
not exceed some fixed upper boundN ∈ N. Moreover let the duality mappingJp be
sequentially weak-to-weak-continuous, i.e. it maps weakly convergent sequences in
X to weakly convergent sequences inX∗. Then the method either stops after a finite
numbern∗ of iterations in caseRn∗ = 0 wherexn∗ = Πp

MAx=y
(x0) or the sequence

(xn)n converges weakly toΠp
MAx=y

(x0). Moreover we have

MAx=y ⊂ Hn , xn+1 = Πp
Hn

(xn) , Jp(xn+1) = Πq

Jp(xn)+U∗
n

Jp(z) , z ∈MAx=y .

Assertions(b) and(c) of proposition4.1 remain valid.

Proof. The proof is done similar to that of proposition 4.1 taking according modi-
fications into account. Note that the relationsxn+1 = Πp

Hn
(x0) and Jp(xn+1) =

Πq

Jp(x0)+U∗
n

Jp(z), which were necessary to prove strong convergence, do not longer
hold. Nevertheless it remains true that every subsequence of(xn)n has in turn a sub-
sequence(xnk

)k converging weakly to some ˜x ∈MAx=y and thatJp(xnk
)− Jp(x0) ∈

R(A∗). SinceR(A∗) is weakly closed this implies thatJp(x̃) − Jp(x0) ∈ R(A∗)
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in case the duality mappingJp is sequentially weak-to-weak-continuous. Hence ˜x =
Πp

MAx=y
(x0) and we conclude that(xn)n converges weakly toΠp

MAx=y
(x0).

Remark 4.3. We remind that in finite dimensions weak and strong convergence coin-
cide. Furthermore the duality mappings of thelp-sequence spaces are sequentially
weak-to-weak-continuous. This is not valid for theLp-function spaces, see CIO-
RANESCU [8].

5. Numerical Experiments

To illustrate the advantage of using sequential subspace methods when dealing with
large scale problems we computed the minimump-norm solutionsx†

p of matrix equa-
tionsAx = y for different valuesp and dimensionsN of the search spaces. The matrix
A was a randomly generated 1000× 5000-matrix with entries in[−1, 1]. To obtain
systems with known solutions of minimump-norm equal to 1 we generated a random
vectory∗ in [−1, 1]1000, set

x†
p :=

J∗
q (A∗y∗)

‖J∗
q (A∗y∗)‖p

and y := Ax†
p .

We implemented method 1 in MATLAB where the minimization subproblems in (S2)
were solved with the function FMINUNC, which is a BFGS Quasi-Newton method. As
search spaces we used

U∗
n = span{A∗Jr(Axmax{0,n−N+1} − y), . . . , A∗Jr(Axn − y)} ,

whence dim(U∗
n) ≤ N with N = 2, 4, 6. Depending on the smoothness of the dual

(R5000, ‖.‖q) of (R5000, ‖.‖p) we usedJ2 and∆2 in casep < 2 andJp and∆p in case
p > 2. The algorithm was terminated when

‖Axn − y‖2
‖y‖2

≤ 10−4 .

Table 1 lists the number of outer iterationsn for different values ofp andN , showing
that already using search spaces with low dimensions helps to reduce the number of
the costly applications ofA andA∗ tremendously. The convergence of the Landweber
method (4.1) where only one single search direction was used, i.e.N = 1, was signifi-
cantly slower as tests in [20] demonstrated where we needed thousands of iterations to
get reasonable approximations tox†

p. Figures 1-2 confirm that the Bregman distance
of the iteratesxn to the solutionx†

p is indeed decreasing in each iteration as stated in
proposition 4.1 (c), but this need not be true for the norm distance or theresiduals.
Moreover they demonstrate that in general∆p(x, y)

1
p is not proportional to‖x − y‖,

whereas this is valid in Hilbert spaces forp = 2.
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Figure 1: Relative error of the residual, norm and Bregman distance ofthe iteratesxn

to the minimump-norm solutionx†
p (log-scale) vs. number of iterationsn for p = 1.2

(top),p = 1.5 (bottom) and dimensionsN = 2, 4, 6 of the search spaces
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Figure 2: Relative error of the residual, norm and Bregman distance ofthe iteratesxn to
the minimump-norm solutionx†

p (log-scale) vs. number of iterationsn for p = 6 (top),
p = 10 (bottom) and dimensionsN = 2, 4, 6 of the search spaces
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p = 1.2 p = 1.5 p = 6 p = 10

N = 2 435 22 102 297

N = 4 211 15 79 183

N = 6 137 14 49 131

Table 1: Number of iterations for differentp-norms and
dimensionsN of the search spaces

6. Conclusions

We have placed the problem of computing minimum-norm solutions of linear opera-
tor equations in the context of computing metric and Bregman projections onto affine
subspaces. Using the simple relationshipPC(x) − x = Πp

C−x(0) enabled us to use
the same iterative method for the computation of metric and Bregman projections onto
affine subspaces which are given by the nullspace or the range of a linear operator.
Furthermore we modified an earlier proposed method of Landweber type using ideas
from sequential subspace optimization methods to accelerate convergence and to ob-
tain a powerful iteration scheme. The construction of that scheme followed ideas from
the CG-algorithm where in each step several search directions are takeninto account.
The convergence could be distinctively accelerated by using this advanced strategy.
We at last mention that the developed method must not be seen as being just an im-
provement of the Landweber method but as general optimization approach leading to
a highly efficient solver for linear inverse problems in Banach spaces.
Further research should include the investigation of the regularizing property of the
subspace method, convergence rates in connection with appropriate source conditions,
as well as the application to real-world problems.
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