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SUMMARY

Thermoacoustic computed tomography (TCT) is a novel imaging technique for non-destructive eval-
uation and medical imaging. It uses electromagnetic energy as input and the induced thermoacoustic
pressure �eld as measurement output. The determination of the unknown energy deposition function
is based on the integral geometric problem of reconstructing a function from its integrals over certain
spheres. We apply the method of approximate inverse to derive �ltered backprojection type reconstruc-
tion algorithms in spherical scanning geometry. Numerical results are presented and show the validity
of the resulting algorithms. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Current research demonstrates that thermoacoustic computed tomography (TCT) is a promising
hybrid imaging technique for non-destructive evaluation and medical imaging. It combines the
advantages of purely optical imaging (high contrast) and ultrasound imaging (high resolution).
It uses either pulsed radio frequency or pulsed laser as energy input and measures the induced
thermoacoustic pressure �eld [1–4].
Assume a semitransparent sample is illuminated by a pulsed electromagnetic energy. The

speci�c properties of the absorbing medium result in a non-uniform energy deposition within
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the sample, followed by a non-uniform thermoelastic expansion. This produces an acoustic
pressure wave [5,6]. At some speci�ed frequencies of the electromagnetic radiation di�erent
tissues o�er a highly varying absorptivity, which establishes the potentiality of high contrast
imaging [7]. The goal of TCT is to recover the signi�cant energy deposition by measuring the
induced thermoacoustic pressure wave using acoustic detectors located outside the illuminated
sample.
If the duration of the electromagnetic pulse is short and the acoustic properties of the

illuminated sample are relatively homogeneous, the generated thermoacoustic time-dependent
pressure at a point x∈R3 is essentially given by the integral of the energy deposition function
over spheres centred at x.
In mathematical terms TCT consists in the problem of recovering the energy deposition

function from its mean values over spheres with centres lying on a hypersurface S (location
of the detectors). Typically the centre set S is either a plane, a sphere or a cylinder [1,3,8–10].
In this paper we consider the case where the centre set is a sphere and apply the method of
approximate inverse to derive �ltered backprojection type reconstruction algorithms.
The outline of this work is as follows: in Section 2 we recall the physical principles of linear

thermoacoustics. Thermoacoustic tomography in spherical scanning geometry is addressed in
Section 3. The method of approximate inverse is outlined in Section 4 and applied to TCT in
Section 5. We derive novel reconstruction algorithms similar to those used in ordinary X-ray
computed tomography. Finally, results of our numerical studies are presented in Section 6.

2. LINEAR THERMOACOUSTICS

In this section, we illustrate the basic physical principles of linear thermoacoustics. The gov-
erning equations of linear thermoacoustics are the linearized balance equations of �uid dy-
namics [11,12] for a homogeneous, isotropic, inviscid �uid and an additional equation relating
the change of thermal energy to the change of electromagnetic radiation.
The linearized continuity equation

@%
@t̂
=−%0∇ · v (1)

is derived from the principle of conservation of mass if the particle velocity v(x; t̂ ) is small
and the mass density %tot(x; t̂ )= %0 + %(x; t̂) is weakly varying, i.e. |%(x; t̂)|� %0.
The linearized Euler equation

%0
@v
@t̂
=−∇p (2)

is derived from the principle of conservation of momentum for a non-viscous, non-turbulent
�ow in the absence of external forces with slowly varying pressure ptot(x; t̂)=p0 + p(x; t̂),
i.e. |p(x; t̂)|�p0, within the �uid [13]. By combining Equations (1) and (2) we can eliminate
the particle velocity and �nd

@2%
@t̂
−�p=0 (3)

To relate the mass density and the pressure to the absorbed electromagnetic energy we
assume the existence of the so-called entropy density function stot(x; t̂)= s0 + s(x; t̂) with
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|s(x; t̂)|� s0 such that the following two properties hold:

1. The internal energy can be written as a function etot = ê(stot ; %tot) of mass density and
entropy.

2. The pressure is given by the change of internal energy with respect to the volume

ptot = p̂(stot ; %tot) :=
1
%2tot

@ê
@%
(stot ; %tot) (4)

Usually the temperature is de�ned as the rate of change of internal energy with respect to
entropy

Ttot := T̂ (stot ; %tot) :=
@ê
@s
(stot ; %tot)

and we assume that |Ttot − T0|�T0 whereby T0 := T̂ (s0; %0).
The linearized entropy equation

%0T0
@s
@t̂
= r

is derived from the principle of conservation of energy under the assumption that the heat
�ux is negligible. Here r(x; t̂) denotes the absorbed energy per unit volume and unit time.
The absorbed energy

r(x; t̂ )= Î em(x)j(t̂ ) (x)

is proportional to the electromagnetic radiation intensity Î em(x)j(t) and the absorption density
 (x) inside the �uid. The temporal shape of the electromagnetic pulse j(t)∈C1(R) is assumed
to have small support [0; �] (�� 1), to be non-negative, and to satisfy∫

R
j(t̂ ) dt̂=1

Such a function approximates the �-distribution.
From Equation (4) it follows that

@s
@t̂
=

@p=@t̂
@p̂=@s

− (@p̂=@%)(@%=@t̂ )
@p̂=@s

(5)

Here @p̂=@s and @p̂=@% denote the �rst partial derivatives of p̂. The speci�c heat capacity cp,
the thermal expansion coe�cient at constant pressure �, and the adiabatic speed of sound vs
are given by the following relations (see e.g. Reference [5]):

@p̂
@%
= v2s and

@p̂
@s
=

T0v2s %0�
cp

Inserting these identities into Equation (5) and expressing @s=@t̂ in accordance with the
linearized entropy equation it follows that

@%
@t̂
=
1
v2s

@p
@t̂
− �

cp
r (6)

Equation (6) is called expansion equation since it describes the relation between the rate
of change of volume to the change of pressure and the deposited energy per unit time
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illuminated

heat

deposited

volume

Figure 1. Thermoelastic e�ect. The absorbed electromagnetic energy within the illu-
minated part of the �uid causes thermal expansion and a subsequent pressure �eld.
The dependence between the thermoelastic expansion and the pressure on the received

electromagnetic energy is given by the expansion equation (6).

(Figure 1). Together with (6) and a scaling of time t= t̂vs Equation (3) implies(
@2

@t2
−�

)
p=f(x)

dj
dt

(7)

where

f(x) :=
�vs
cp

Î em(x) (x)

is the normalized energy deposition function.
The solution of (7) is unique if appropriate initial conditions are speci�ed. We use

p(x; 0)=0 together with
@p
@t
(x; 0)=0 (8)

to represent the fact that there is no acoustic pressure before the beginning of the experiment
(at time t̂=0). The unique solution of (7) and (8) is given by

p :=
dj
dt
∗t (tMf) (9)

where ∗t is the (Laplace-) convolution

(g1 ∗t g2)(x; t) :=
∫ t

0
g1(x; t − s)g2(x; s) ds

with respect to t and Mf is the spherical mean operator

(Mf)(x; t) :=
1
4�

∫
S2
f(x + t!) d�(!) (10)

for t¿ 0 and x∈R3 (see e.g. Reference [14, p. 136]). Here S2 denotes the two-dimensional
unit sphere in R3 with surface measure d�.
In mathematical terms thermoacoustic tomography is concerned with the inverse problem

of recovering an unknown energy deposition function f from temporal measurement data of
the thermoacoustic pressure �eld p taken on a surface S outside the illuminated �uid.
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3. THERMOACOUSTIC TOMOGRAPHY IN SPHERICAL SCANNING GEOMETRY

In this section we explicitly deal with the case where the energy deposition function f is sup-
ported in a closed ball B� :=B�(0) with centre 0 and radius � and in which the thermoacoustic
pressure �eld is measured on S� := @B� (Figure 2).
The following notations will hold throughout the paper:

X :=L2(B�)= {f∈L2(R3) : f(x)=0 for a:e: x∈R3 \ B�}
denotes the Hilbert space of all square integrable functions supported in B� with associated
inner product 〈· ; ·〉 and norm ‖ · ‖. For all T¿ 0 let

YT :=L2(S�× [0; T ])
denote the Hilbert space of all square integrable functions f : S�× [0;∞)→R supported in
S�× [0; T ]. We denote by

〈g1; g2〉T =
∫
S�

∫ T

0
g1(�; t)g2(�; t) dt d��(�)

its inner product and by ‖ · ‖T the associated norm. Here d�� denotes the surface measure on
S�. Let Dt be the operator that maps ’∈C1(S�× [0;∞)) onto its derivative with respect to
the second variable

Dt’(y; t)=’t(y; t); y∈ S�; t ∈ [0;∞)
Finally, we introduce the operators

N : C0c (B�) ⊆ X → Y2�; (Nf)(�; t) := tMf(�; t)

P : C0c (B�) ⊆ X → Y2�+�; Pf=Dtj ∗t Nf

Figure 2. Thermoacoustic scanning system. The examined object is illuminated by a short electromag-
netic pulse. The thermoelastic e�ect (cf. Figure 1) causes an evolving pressure wave that is measured

with several acoustic detectors enclosing the imaged object.
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From (9) we see that the operator P maps an unknown energy deposition function f onto
the thermoacoustic pressure �eld restricted to the recording surface S�. Particularly, if f is a
C1 function and the pulse duration � tends to 0 then Pf tends to DtNf.

Lemma 3.1
Let f∈C0c (B�). Then ‖Nf‖22�6�2‖f‖2 and

‖Pf‖22�+�6 (2�+ �)��2‖Dtj‖2∞‖f‖2 (11)

Here ‖Dtj‖∞ := sup{|Dtj(t)| : 06 t6 �} denotes the supremum norm of Dtj.

Proof
Let �∈ S�. Since supp(f) ⊆ B� it follows from the Cauchy inequality that

‖Nf(�; ·)‖2L2[0;2�] =
∫ 2�

0

(
t
4�

∫
S2
f(�+ t!) d�(!)

)2
dt

6
1
4�

∫ 2�

0

∫
S2
f(�+ t!)2 d�(!)t2 dt=

1
4�
‖f‖2

This shows that

‖Nf‖22�=
∫
S�
‖Nf(�; ·)‖2L2[0;2�] d��(�)6�2‖f‖2 (12)

Next we verify (11). Assume y∈ S� and t ∈ [0; 2�+ �]. A further application of the Cauchy
inequality yields

|Dtj ∗t Nf(�; t)|2 =
[∫ t

0
Nf(�; t − s)(Dtj)(s) ds

]2

6 ‖Nf(�; ·)‖2L2[0;2�]
∫ �

0
(Dtj)(s)2 ds6 �‖Dtj‖2∞‖Nf(�; ·)‖2L2[0;2�]

From the last inequality and (12) we conclude that

‖Pf‖22�+� =
∫
S�

∫ 2�+�

0
|Dtj ∗Nf(�; t)|2 dt d�(y)

6 (2�+ �)�‖Dtj‖2∞
∫
S�
‖Nf(�; ·)‖2L2[0; �]

6 (2�+ �)�‖Dtj‖2∞�2‖f‖2

Hence we have shown (11).

As a consequence of Lemma 3.1 the operators N and P extend in a unique way to bounded
linear operators N : X →Y2� and P : X →Y2�+�, respectively. In particular, they have bounded
adjoints.
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Lemma 3.2
Let g∈C0c (S�× [0; 2�]) and p∈C0c (S�× [0; 2�+ �]). Then,

(N∗g)(x) =
1
4�

∫
S�

g(x; ‖x − �‖)
‖x − �‖ d��(�); x∈B� (13)

(P∗p)(x) =− 1
4�

∫
S�

(Dt �j ? p)(x; ‖x − �‖)
‖x − �‖ d��(�); x∈B� (14)

Here �j is de�ned by �j(s) := j(−s) and
(Dt �j ? p)(x; s) :=

∫ s+�

s
Dt �j(s− t)p(x; t) dt

Proof
Let f∈C0c (B�) and g∈C0c (S�× [0; 2�]). We verify Equation (13) by showing that 〈Nf; g〉2�=
〈f;N∗g〉. From Fubini’s theorem we obtain

〈Nf; g〉2� =
∫
S�

∫ 2�

0
tMf(�; t)g(�; t) dt d��(�)

=
1
4�

∫ 2�

0

∫
S2

∫
S�
f(�+ t!)g(�; t) d�(�) d��(!)t dt

=
1
4�

∫
B�

f(x)
∫
S�

g(�; ‖x − �‖)
‖x − �‖ d��(�) dx

where the last equality follows by the substituting x=�+ t!. Hence we proved (13).
Next we verify Equation (14). Let f∈C0c (B�) and p∈C0c (S�× [0; 2�+ �]). Moreover, let

y∈ S� and de�ne

B1 :=
⋃

06t62�+�
[0; t]×{t}

B2 :=
⋃

06s62�
{s}× [s; 2�+ �]

Clearly B2 ⊆ B1. Since (Nf)(�; ·) is supported in [0; 2�] the function F(s; t) :=
(Nf)(�; s)p(y; t) vanishes on the complement of B2 (see Figure 3). Hence Fubini’s theo-
rem gives∫ 2�+�

0
(Dtj ∗t Nf)(�; ·)p(�; t) dt =

∫ 2�+�

0

∫ t

0
Dtj(t − s)Nf(�; s)p(�; t) ds dt

=
∫
B1
(Dtj)(t − s)Nf(�; s)p(�; t) d(s; t)

=
∫
B2
(Dtj)(t − s)Nf(�; s)p(�; t) d(s; t)

=
∫ 2�

0
Nf(�; s)

∫ 2�+�

s
(Dtj)(t − s)p(�; t) dt ds

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1919–1937
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Figure 3. The intersection of the support of the function Dtj(t−s) with supp(F) is contained in B2 ⊆ B1.

Since (Dt �j)(t)=−(Dtj)(−t) the last equality together with (13) implies that

〈Pf;p〉2�+� =
∫
S�

∫ 2�+�

0
(Dtj ∗t Nf)(�; t)p(�; t) dt d��(�)

=−
∫
S�

∫ 2�

0
Nf(�; s)

∫ s+�

s
(Dt �j)(s− t)p(�; t) dt ds d��(�)

=−
∫
S�

∫ 2�

0
Nf(�; s)(Dt �j ? p)(�; s) ds d�(�)= 〈f;P∗p〉

where P∗g is de�ned by (14).

Remark 3.3
The duration � of the electromagnetic pulse is typically in the range of micro seconds. Hence
the temporal part of the electromagnetic pulse can be approximated by the delta distribution.
Therefore we can regard DtNf as measurement data. From Lemma 3.2 it follows that we
can approximate its adjoint suitable by −N∗Dtp.

In a recent paper Finch et al. [15] proved the injectivity of the operator N on the space
of smooth (i.e. C∞) functions that are supported in B�. Moreover, in Reference [15] several
inversion formulas have been stated and proven.
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Theorem 3.4 (Finch et al. [15, Theorem 3])
Let f∈C∞

c (B�). Then

f=−2
�
N∗DttDtNf (15)

For our purposes in Sections 5 and 6 have to extend this formula to non-smooth functions.

Corollary 3.5
Let f∈C1c (B�) and assume DtNf∈C1c (S�× [0; 2�]). Then (15) holds true.
Proof
Let ’∈C∞

c (B�). From Theorem 3.4 it follows that (15) holds true for ’ and hence
−�=2〈f;’〉= 〈f;N∗DttDtN’〉. Since f and hence N∗f is a C1 function the right-hand side
of this equation is given by −〈tDtNf;DtN’)〉2�. Together with the assumption DtNf∈C1c
(S�× [0; 2�]) this implies that

−�
2
〈f;’〉= 〈N∗DttDtNf;’〉

Since the last equality is valid for all ’∈C∞
c (B�) we can conclude that −�=2f=N∗DttDtNf.

4. APPROXIMATE INVERSE FOR LINEAR OPERATOR EQUATIONS

The method of approximate inverse is a regularization scheme which has been developed for
a stable solution of operation equations of the �rst kind

Af= g (16)

in Hilbert spaces. Since its establishment by Louis and, Maa� [16], Louis [17,18] the method
has led to novel and e�cient solvers in such di�erent applications as 2D- and 3D-computerized
tomography [19,20], vector �eld tomography [21–23], inverse scattering [24], sonar [25] and
X-ray di�ractometry [26].
Let A in (16) be a linear, bounded operator between function spaces X :=L2(�1; �1) and

Y :=L2(�2; �2) where �i ⊂ Rni , i=1; 2, are bounded domains. Further assume e∈X to be a
continuous function satisfying ∫

Rn1

e(x) dx=1 (17)

and de�ne for �¿0

e�(x; y)= �−n1e((x − y)=�) (18)

If e� satis�es ∫
�1

f(x)e�(x; y) dx → f(y); a:e: (19)
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in X when �→ 0, we call e a molli�er. The idea of approximate inverse consists of computing
the smoothed version

f�(y) := 〈f; e�(·; y)〉X (20)

rather than f itself. To get a representation of f� which does not depend on the exact solution
f we consider the dual equation

A∗v�(y)= e�(·; y) (21)

and assume for the moment that e�(·; y) is in the range of A∗, the L2-adjoint of A, for y∈�1.
Having the solution v�(y) of (21) at hand we obtain with (20)

f�(y)= 〈f;A∗v�(y)〉X = 〈Af; v�(y)〉Y
Thus, we can calculate f� by simply evaluating inner products of the measurement data Af
with the reconstruction kernels v�(y).
The �rst feature of the method can be seen from (21): The computation of the reconstruction

kernels does not depend on the noise perturbed measurement data g. As a matter of fact in
most cases, such as in computerized tomography and TCT (see Section 5), we have an analytic
expression for v�(y) available. A further advantage of the procedure is the possibility to use
invariance properties of the underlying operator A to enhance the e�ectivity considerably.
In References [23,27] the authors developed a convergence and stability analysis for the
method of approximate inverse in general Hilbert spaces which also applies to the inverse
TCT problem.

5. COMPUTATION OF RECONSTRUCTION KERNELS

In this section we apply the method of generalized inverse to TCT in a spherical geometry.
Instead of trying to solve Pf=p we search for smoothed approximations (f�; 	)�¿0 of the

form

f�; 	(y) := 〈f; e�; 	(·; y)〉; y∈R3

where we consider radially symmetric molli�ers (e�; 	(·; y))�¿0 of the form

e�; 	(x; y)=
1

I	�3
R	

(‖y − x‖2
�2

)
; x; y∈R3 (22)

Here, 	¿0 is a real number, I	 :=�3=2	(	+1)=	(	+ 5
2) is a scaling factor and R	 is a function

on [0;∞) de�ned by

R	(s) : =

{
(1− s)	 if 06 s6 1

0 if s¿ 1
(23)

Since supp(R	)= [0; 1] it follows that e�; 	(·; y) has support B�(y) and by the chain rule we
see that e�; 	(·; y)∈Ck(R3) for all integer numbers k¡	. Let us now show that∫

B�(y)
e�; 	(x; y) dx=1; y∈R3 (24)

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:1919–1937
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Figure 4. The molli�er e�; 	(·; y) for �=1 and 	=2.

By using spherical co-ordinates z=y+
�� with 
∈ [0; 1] and �∈S2 we can see that (Figure 4)

∫
B�(y)

e�; 	(x; y) dx=
1
I	

∫ 1

0

∫
S2
R	(
2) d�(�)
2 d
=

4�
I	

∫ 1

0
(1− 
2)	
2 d


Substituting 
= cos � yields∫
B�(y)

e�; 	(x; y) dz=
4�
I	

∫ �=2

0
sin2	+1(�) cos(�) d�=

4�
I	

	(	+ 1)	(32)
2	(	+ 5

2)

For the last equality we have used [28, formula (16), p. 993]. Hence (24) follows from
the de�nition of I	 and the identity 	(32)=

√
�=2. Thus, e�; 	 is a molli�er, i.e. satisfying

(17)–(19).
From Corollary 3.5 we deduce that if e�; 	(·; y) and tDtNe�; 	(·; y) are C1 functions then

v�; 	(y) :=
2
�
tDtNe�; 	(·; y) (25)

is a solution of the equation −N∗Dtv�; 	(y)= e�; 	(·; y). From Lemma 3.3 it follows that if
�� 1 we can approximate P∗v�; 	(y) by −N∗Dtv�; 	(y) and therefore we can regard v�; 	(y) as
a reconstruction kernel for the operator P associated to the molli�er e�; 	(·; y).
In order to compute (25) we have to calculate DtNf where f is a translation of a rota-

tionally symmetric function. This is subject of Lemma 5.1 and Theorem 5.2.

Lemma 5.1
Let ’ : [0;∞)→R be continuous and 
 be a primitive of ’. Assume y∈R3 and de�ne
f’ ∈C0(R3) by f’(x) :=’(‖x − y‖2). Then

(Mf’)(x; t)=

⎧⎪⎨
⎪⎩

((‖x − y‖+ t)2)−
((‖x − y‖ − t)2)

4t‖x − y‖ if x �=y

’(t2) if x=y

(26)

for positive t, x∈R3 and Mf’(x; 0)=’(‖x − y‖2)=f’(x).
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Proof
The identity Mf’(x; 0)=’(‖x − y‖2) immediately follows from the de�nitions of f’ and M
(see (10)).
Now let t¿0 and x∈R3. If x=y then f’(x + t!) is constant on !∈ S2 and hence

Mf’(x; t)=’(t2). If x �=y then

Mf’(x; t) =
1
4�

∫
S2
’(‖x + t!− y‖2) d�(!)

=
1
4�

∫
S2
’
(
‖x − y‖2 + t2 + 2t‖x − y‖

〈
x − y
‖x − y‖ ; !

〉)
d�(!)

To evaluate the last integral we can apply the Funck–Hecke theorem for n=3, see e.g.
Reference [29, p. 20], and we obtain

Mf’(x; t)=
1
2

∫ 1

−1
’(‖x − y‖2 + t2 + 2t‖x − y‖s) ds

Since 
 is a primitive of ’ we �nd by the substitution rule

Mf’(x; t) =

(‖x − y‖2 + t2 + 2t‖x − y‖s)|1−1

4t‖x − y‖

=

((‖x − y‖+ t)2)−
((‖x − y‖ − t)2)

4t‖x − y‖

Hence we have proved (26).

Theorem 5.2
Let ’, 
; and f’ be as in Lemma 5.1 and assume that ’ is a C1 function such that there
is some 0¡�¡1 with supp(’) ⊆ [0; �2]. Further assume that y∈B�−�. Then f’ ∈C1c (B�),
DtNf’ ∈C1c (S�× [0; 2�]) and

(DtNf’)(�; t)=p’(‖� − y‖; t); �∈ S�; t ∈ [0; 2�] (27)

where

p’(s; t) :=
(s− t)’((s− t)2)

2s
; s¿0; t ∈ [0; 2�] (28)

Proof
Since ‖ · ‖2 ∈C∞(Rn) it follows by the chain rule that f’=’ ◦ ‖ · ‖2 ∈C1(R3). To show
that supp(f’) ⊂⊂ B� let 
 := (‖y‖+ �+ �)=2 and x∈R3 \ B
. From ‖y‖¡� − � we see that
0¡
¡� and thus B
 ⊂⊂ B�. From the triangle inequality it follows that ‖x−y‖¿ ‖x‖−‖y‖¿

− ‖y‖=(�+ �− ‖y‖)=2¿0 and hence f’(x)=0. This shows that f’ ∈C1c (B�).
Next we verify Equation (27). Let t¿0 and �∈ S�. Since (Nf’)(�; t)= (tMf’)(�; t) and

‖� − y‖¿�¿0 it follows from Lemma 5.1 that

(DtNf’)(�; t)=
@
@t

(

((‖� − y‖+ t)2)−
((‖� − y‖ − t)2)

4‖� − y‖
)

(29)
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Since ‖�− y‖+ t¿� the �rst term on the right-hand side vanishes. Moreover, since ’ is the
derivative of 
, Equation (29) implies (27). For t=0 Equation (27) holds true since both
sides vanish.
Finally the assertion DtNf’ ∈C1c (S�× [0; 2�]) is a direct consequence of Equations (27)

and (28).

We are now able to compute an explicit representation of v�; 	(y).

Corollary 5.3
Let v�; 	(y) be de�ned by (25) with e�; 	(·; y) as in (22) and (23) and let 	¿1. Further assume
y∈B�−� and 0¡�¡1. Then we have the representation

v�; 	(y)(�; t)=
k�; 	(‖� − y‖; t)
4�‖� − y‖ ; �∈ S�; t ∈ [0; 2�] (30)

where

k�; 	(s; t) :=
4�t(s− t)�

�3I	
R	((s− t)2=�2) (31)

Particularly, if ‖� − y‖ =∈ [t − �; t + �], then v�; 	(y)(�; t)=0.

Proof
The assumption 	¿1 guarantees that ’(r2)=R	(r2=�2)=(I	�3) and hence f’= e�; 	(·; y) satisfy
the conditions claimed in Theorem 5.2. Hence from Equation (25) it follows that

v�; 	(y)(�; t) =
2
�

t
�3I	

(‖� − y‖ − t)R	((‖� − y‖ − t)2=�2)
2‖� − y‖

=
1

4�‖� − y‖
4�t(‖� − y‖ − t)

��3I	
R	((‖� − y‖ − t)2=�2)

Hence we have proven (30) and (31). From the fact that supp(R	)= [0; 1] it follows that
v�; 	(y)(�; t)=0 for ‖� − y‖ =∈ [t − �; t + �].

Now let �¿0, 	¿1, assume y∈B�−� and de�ne p :=Pf. Taking into account that
P∗v�(y)=−NDtv�(y) if j is replaced by the delta distribution we may consider (30) as
an appropriate choice for the reconstruction kernel associated to the molli�er e�; 	. Note
that in this case we set �=0. The method of approximate inverse applied to Pf=p then
reads as

f�; 	(y) = 〈Pf; v�; 	(y)〉2�=
∫
S�

∫ 2�

0
p(�; t)

k�; 	(‖� − y‖; t)
4�‖� − y‖ dt d��(�)

=
∫
S�

1
4�‖� − y‖

(∫ 2�

0
p(�; t)k�; 	(‖� − y‖; t) dt

)
d��(�)= (N∗q�; 	)(y)
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with

q�; 	(�; s) :=
∫ s+�

s−�
p(�; t)k�; 	(s; t) dt (32)

which represents an inversion scheme of �ltered backprojection type.

Remark 5.4
The assumption y∈B�−� is not a signi�cant restrict with respect to applications, since 0¡�� 1
and the support of f has in fact a positive distance from @B�= S� in practical experiments.

6. NUMERICAL EXPERIMENTS

In this section we show numerical experiments of recovering a function f from measurement
data p=Pf. Let 	¿0 be a �xed positive number.
In Section 5 we have outlined that we can �nd approximations f�; 	(y) := 〈p; v�; 	(y)〉2� by

�rstly evaluating the �ltered signal q�; 	 de�ned by (32) and then evaluating the backprojection

f�; 	(y)= (N∗q�; 	)(y)=
1
4�

∫
S�

q�; 	(�; ‖y − �‖)
‖y − �‖ d��(�)

in every reconstruction point y∈B�. Hence the algorithm consists of two steps: First we per-
form a �ltering step and then we integrate over all spheres with centre on S� intersect-
ing y. This last step is also called backprojection. This procedure is analogous to the �ltered
backprojection algorithm in classical X-ray CT.
For our numerical tests we assume �=1, that is S�= S2. We further assume that the data

are merely known for a �nite number of N�N’ detector points

�k; l=

⎛
⎜⎜⎝
cos(�k) cos(l)

cos(�k) sin(l)

sin(�k)

⎞
⎟⎟⎠ ∈ S2 = S�; k=1; : : : ; N�; l=1; : : : ; N

with �k :=−�=2+ �(k − 1)=(N� − 1) and l := 2�(l− 1)=N, and the pressure signals at each
detector point is sampled at Nt time steps

tm=2(m− 1)=Nt; m=1; : : : ; Nt

The aim is to evaluate f�; 	 at N :=N 3
y points yi, i=1; : : : ; N , lying on an equidistant grid.

This requires the computation of q�; 	(�k; l; ‖�k; l − yi‖) in every reconstruction point yi. To
reduce the computational e�ort we evaluate q�; 	(�k; l; ·) for tm with m=1; : : : ; Nt only and
use linear interpolation to approximately �nd the value at ‖�k; l − yi‖. As quadrature rule
on S2 for a function F on the sphere we use the trapezoidal rule in � and 
direction applied to the co-ordinate representation cos(�)F(�; ). Hence our algorithm for
the determination of f[i] :=f�; 	(yi) out of the discrete data p[k; l; m] :=p(�k; l; tm) reads
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as follows:

Algorithm 1 Reconstruction of f[i] from measuring data p[k; l; m].

1: const← 4�=(�3I	)
2: f[1; : : : ; N ]← 0 B initialization
3:
4: for m;m′=1; : : : ; Nt do B calculating kernel
5: k[m;m′]← const · tm(tm′ − tm)R	

(
(tm − tm′)2=�2

)
6: end for
7:
8: for k=1; : : : ; N�, l=1; : : : ; N do
9: d�← cos(�k)2�2=(NN�)
10:
11: for m=1; : : : ; Nt do B �ltering step
12: q[m]← 2=Nt ·

∑
m′ k[m;m′]p[k; l; m′]

13: end for
14:
15: for i=1; : : : ; N do
16: Find m∈{1; : : : ; Nt − 1} with tm6 ‖�k; l − xi‖¡tm+1
17: u←Nt(‖�k; l − xi‖ − tm)=2
18: Q← (1− u) · q[m] + u · q[m+ 1] B interpolation
19: f[i]← f[i] + Q=(4�‖xi − �k; l‖) · d� B discrete backprojection
20: end for
21:
22: end for

The total number Nop of operations needed to perform this algorithm can easily be estimated.
Let us assume that O(N�)=O(N)=O(Nt)=O(Ny). Then

Nop =O(N 2
t ) +O(N�N)(O(N 2

t ) +O(N 3
y ))=O(N 5=3)

We demonstrate the performance and stability of our algorithm by means of the following
two examples:

1. Let us consider an energy deposition function f∈C1c (B�) of the form

f(y)=
M∑
�=1

F�(‖y − y�‖)

consisting of M radially symmetric absorbers f�(y) :=F�(‖y− y�‖) with centre y� and
radial pro�le F�. From Theorem 5.2 it follows that p=

∑
�p� is given by

p�(�; t)=
‖� − y�‖ − t
2‖� − y�‖ F�(|‖� − y�‖ − t|)

for �∈ S2 and t¿ 0.
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Figure 5. Top left: Cross section of the synthetic data from which the thermoacoustic
pressure is calculated analytically. Top right: Vertical centreline of the original and the
reconstruction from exact data. Bottom left: Reconstruction from exact data. Bottom right:

Reconstruction from noisy data perturbed with 20% Gaussian white noise.

To produce the results of Figure 5 we have used an object consisting of 5 radially
symmetric objects of di�erent sizes. The algorithm was performed with Ny=Nt =N=
120 and N�=60. Figure 5 shows both the reconstruction out of the exact data and out of
the data with a random perturbation of 20% additive Gaussian noise. The regularization
parameter � was chosen to be 0:05 and the exponent in the molli�er 	=2.

2. Consider an arbitrary energy deposition function f∈C1c (B�). To simulate the measure-
ment data we have to �nd p(�; t) for �∈ S2 and t ∈ [0; 2] numerically. Therefore, we
use the Fourier series expansions

f(y)=
1
8
∑
k∈Z3

fke−i�〈k;y〉=2 (33)
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Figure 6. Top: Synthetic data from which the thermoacoustic pressure is calculated numerically. Bottom:
Reconstruction from simulated data with �=0:05 and 	=2.

and

p(y; t)=
1
8
∑
k∈Z3

pk(t)e−i�〈k;y〉=2 (34)
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for y∈ [−2; 2]3 and t¿ 0. It is easy to see, that if we de�ne

pk(t)= cos(�‖k‖t=2)fk (35)

then p agrees with the unique solution of (7), (8) on S2× [0; 2] (for �→ 0). On the
basis of (33), (34), (35) we compute approximations to p=DtNf with the help of the
FFT-Algorithm.
In this way we simulated the thermoacoustic measurement data for a three-dimensional

head phantom. Figure 6 shows the head phantom and its reconstruction using Algo-
rithm 1. It was performed with Ny=Nt =N=100, N�=80, �=0:05 and 	=2.

7. CONCLUSION

In the paper we have applied the method of approximate inverse to thermoacoustic tomog-
raphy in a spherical scanning geometry. We were able to �nd analytical expressions of the
reconstruction kernels for the considered radially symmetric molli�ers. The complexity of
the resulting reconstruction algorithm is the same as for the �ltered backprojection algorithm
used to invert the classical Radon transform. Reconstructions from simulated measurement data
have been given and show its validity. Future work will contain an detailed error analysis of
discretization and interpolation.
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