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Image Reconstruction and Image Analysis in
Tomography:
Fan Beam and 3D Cone Beam

Alfred K. Louis and Thomas Weber

ABSTRACT. The result of tomographic examination is a series of
images of the region under consideration. On these recmtistns a
diagnosis is based. Automatic evaluations of these imagesther
common in nondestructive testing, in medical analysisriay par-
tially be the case in the future. Typically the two tasks aeated
separately. This paper describes an approach where thetéps, s
the image reconstruction and the image analysis, are caubirhis
leads to new strategies how to develop fast algorithms. /Asnex
ple we consider the standard problem in X-ray tomographyasnd
edge detection. We calculate a special reconstructiorekeand we
present numerical examples.

1. Introduction

The Itered backprojection is the standard reconstructioethod for
2D X—ray tomography. Already Grinbaurb][observed that this al-
gorithm determines a smoothed version of the searchedsfotian. In
different elds the calculation of such smoothed versiofghe solution
is the starting point for developing algorithms, see el 21, 16. A
rst uni ed approach was given in39], which then was generalized in
[24] for the application to linear and also to some nonlineabj@ms. In
[28] this so-called approximate inverse was further genezdlip directly
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compute linear functionals of the solution. The calculatid derivatives
for functions of one variable was already mentioned by Eakhd9],
and also, including numerical experiments, 24][

In this paper we study the problem of determinin§ wheref is the
solution of the linear equatioAf = g. The standard case in reconstruc-
tion problems is that the operatbris the identity, hence we calculate
the solution itself. If we include in the solution step thealesation of
the reconstruction, then we may enhance this task by incatipg parts
of the evaluation in the reconstruction. An example is edgeation
where smoothed derivatives of the images are calculatethendurther
processed. In that cagemay be a differential operator, which increases
the degree of the ill-posedness of the whole problem. Otbssipilities
are the direct calculation of wavelet coef cients of thewgmin, as orig-
inally described in Sec. 3.4.3 ir8]]. Applications to tomography are
givenin [3, 37].

Often, the two procedures are executed independentlyelintage
is itself the result of a reconstruction, for example in ncatimaging,
one can envisage, that the information from the reconstrustep could
be included into the analysis step, which then should giveebeesults.

As example, for a given picturé we compute partial derivatives
Ly = @—@);, hence the result can be written as

Lk f = fk =W ka (1.1)

for a smoothing operatdd/ . If the imagef is a reconstruction, say
the solution of
Af =g (1.2)
we can write the solution, when lItering is considered, as
f =Ef=E AYg (1.3)

whereAY denotes the generalized inversefof Combining these two
steps we get

fx = WLE AYg (1.4)
= k 9 (1.5)
There arise several questions

is there an optimal relation between the two smoothing epera
torsW andE ?

how to choose the parameterand ?

can this operator be ef ciently evaluated ?
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Concerning the last question we know that for the reconstnustep
a convolution operatoE leads to the Itered backprojection method.
Hence we are looking for similar structures in the oper#tor.

After describing the general approach of developing allgors for
calculatingLf in Section 2 we present the special case of fan - beam
tomography in Section 3 for the case whérgis the differentiation of
rst order in thek - th coordinate direction. We then consider the standard
reconstruction problem; i.d. the identity, for cone - beam tomography
for a circular scanning geometry.

2. Approximate Inverse for Combining Reconstruction and
Analysis

This section is based o2%] where we generalize the method of the
approximate inverse as analyzed 4]l Let A : X | Y be a linear
operator between the Hilbert spacésaandY andL : X ! Z be alinear
operator between the Hilbert spaceésandZ . As usual we rst formulate
the reconstruction part

Af =g: (2.1)

Next an operatioth. on the so computed solutidnfor the image analysis
is performed

Lf = LAYg; (2.2)

whereAY denotes the generalized inversefaf Now we adapt the con-
cept of approximate inverse, rstintroduced 2d], where we now com-
pute instead oLf an approximation

(Lf) = Hfe |

with a prescribed molli ere . We formulate in the following theorem the
principle of the reconstruction method.

THEOREM 2.1. Lete be a suitably chosen mollier and be the
solution of the auxiliary problem

A x)=Le((x): (2.3)

Then the smoothed version of the image analysis operatialirdstly
computed from the given datgas

(Lf) (x)=hg; (X )i (2.4)
ProOOF We write the smoothed version of the image analysis part as
(Lf) (x)= hfie (x; )i
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Now we use the adjoint operator bfand the auxiliary problem to con-
tinue

(Lf) (X) H;L e (x; )i
= H;A (x; )i
= hg; (x)i
where in the last step we have used the original equatforr g.
DEFINITION 2.2. The operato :Y ! Z denedas

Sg(x)=hy; (x;)i (2.5)
is called theapproximate inversef A to compute an approximation of
Lf and s called theeconstruction kernel

If we know the reconstruction kernel for computihgthen we can
solve the above problem for computib§ in the following way.

THEOREM2.3. Let = be the suf ciently smooth reconstruction ker-
nel for computing , then the reconstruction kernel for approximating
Lf can be determined as

= LW ~ (2.6)
whereLW acts on the rst variable of™ .

ProoOF The approximation okf is here computed as the applica-
tion of L onf (x) = hg; = (Xx; )i. Interchanging the application &f
and the integration, for suf ciently smooth , gives the result.

Itis shown in R8] thatS is a regularization for computinigf if the
smoothness of is adapted to the smoothing Afand the inverse of
in the following sense

. . " - y
N I&g\l gS(;g yd = LAYg (2.7)

if g is in the range of AY.

The computational ef ciency of the approximate inverseuigale-
pends on the use of invariances. We consider again the rtegctisn
problem in tomography. If we chose for each reconstructiomtpx
a special molli er, namelye (x; ), then the reconstruction kernel also
depends orx, the number of values to store is then the number of re-
construction points times the number of data. If we use ianaes, for
example translation and rotational invariances of the Radansform
and we use these invariances to produce the molli er we cdnae this
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number of values to compute and store to just the number ofsvjmer
direction. The mathematical basis for this can be foun@#.[Here we
cite the corresponding result for the combination of retmietion and
image analysis fromZg].

THEOREM 2.4. LetA : X I Y andL : X ! Z be the two
operators as above. Let

T, @ 2! Z
T, : X! X
T3 @ YL Y
be linear operators with
LTy = ToL (2.8)
T,A = AT; (2.9)

and let  be the solution of the auxiliary problem for a general mali
E

A =L E : (2.10)
Then the solution for the special molli er
e = T1E (2.11)
is
=T; (2.12)

As a consequence we observe that the solution for a speclilemo
ful lling the condition e = T.E can be found as

H,e i=hyTs i:

If for example the operatora andL are of convolution type and if we
chose the molliere also of convolution type, then the mappingg
are all of translation type, which means that also the nabrsstruction
formula is of convolution type.

3. Fan - Beam Tomography and Edge Detection

The mathematical model of computerized tomography in twieah-
sions, for the parallel geometry, is the Radon transform,esg. B5|. It
is de ned as 7

Rf(;s)= f(x) (s hx; i)dx
R2

where 2 Slis a unit vector and 2 R. In the following we summarize
a few results. The central slice theorem, or projectionrdeas nothing
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but the formal application of the adjoint operator for xettettion on
exp({s )

Rf(; )= ) ): (3.1)
The Radon transform of a derivative is

R-Pr(is)= «BRi(;s) (3.2)

@x @s

see e.g. 35, and generalizations for higher derivatives. The invarsi
formula for the two — dimensional Radon transform is

R 1= 4iR | 1 (3.3)
whereR s the adjoint operatozr frorh, to Lo known as backprojection
Rogx)= g(;hx; i)d
Sl
and the Riesz potenti&l  is de ned with the Fourier transform
d19(; )= joC; )
where the Fourier transform acts on the second variable.

The following invariances are well established for the Rattans-
form. Consider fox 2 R? the shift operator3Xf (y) = f(y x) and

T 'g(;s)=o(;s hx; i)then
RTY = TN 'R: (3.4)
Another couple of intertwining operators is found by ratati LetU be
aunitary2 2 matrix andD¥f (y) = f (Uy). then
RDS = DR (3.5)

whereDYg(;s) = g(U;s). With (TR) = R T we get the rela-
tions used in Theorem 2.4. These two invariances lead for & eno
of convolution type and independent of the directions;, ee(x;y) =
E (kx yk), to areconstruction kernel for determinihgf convolution
type, independent of the direction, namely(x; ;s) = (s hxi).

THEOREM 3.1. Let the molliere be given as

e (x5y)= E (kx yk) (3.6)
Then the reconstruction kernel for ndirfgis given as
(x;;8)= (s hxi) (3.7)

where (s) is determined as

1
=4 RE : (3.8)
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ProOF We start with the auxiliary problem and use the inversion
formula forR

R

e
R Re

1
—R I IRe
4

hence we get

1
—1 rRe
4

In order to nd a reconstruction kernel for approximatibgf where

Ly = @—% we use Theorem 2.3.

THEOREM 3.2. If we denote the reconstruction kernel for approxi-
matingf by =, then the reconstruction kernel for approximatibgf is
given as

K (x;38)= W« %s hx i) (3.9)

whereW is the smoothing operator with L = LW and  is the
k-th component of.

ExampPLE 3.3. In the following we relate the regularization parame-
ter with the cut-off frequency via

b=1=:

For the smoothing of the reconstruction part we use the raokinown
from the Shepp - Logan kernel with

E, f=(2 )&f
where -
&)=@2 ) tsinc—— [ ig(k K) (3.10)

and where | .y is the characteristic function of the interyalb; §; i.e.,
it is 1 for values between bandband0 otherwise. This corresponds to

the reconstruction kernel
¥ =2 (b9 sin(bs
= — : 3.11
WS) T 55 2 (pgy? (311)

For the differentiation part we choose

W= )&
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with
&)= ) tsinc K (3.12)
leading to a combined molli er of the form
E =¢e &
with
g ()= ) 1sinc%sincﬁ [k k)

which is of convolution type. With the convolution theoreor Fourier
transforms and the projection theorem for the Radon tramsfoe get

kb(X;;8)= k b(s hx i) (3.13)
where
b = Zi Wh(s+ )  wy(s ) (3.14)

wherewy, is the kernel known from the Shepp-Logan lter, see (3.11).
For
b= = — 3.15
- (3.15)
whereh denotes the distance of the detector elements, the ltenfor
proximatingL «f at the detector points = “h is

1 8
;227 3.16
K2 3.422 en2 (3.16)

k;=h (S) =

The divergent beam transform or X—ray transform in two digiems
also delivers line integrals, the difference to the 2D Rattansform is
the parametrization. For the X—ray transform one uses thee@osition
a2 and the direction of the ray

Z,
Df(a; )= f(a+t )dt: (3.17)
0

If the source is moved on a circle with radiusaround the object, then
one can represent the source positionaas r! ( ) where! () =
(cos; sin )”. If we parametrize the direction = ( ) by the angle
between the line connecting source and center and the rdelgngle
where = 0 means the ray from the source througtthen there is the
following relation between 2D X-ray transform and 2D Radams$form

Df rt (); () =Rf I( + =2);rsin (3.18)
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Formally the two transforms are related by an operator wlary =
[0;2 [ [ arcsin 1=r; arcsin 1=r] the operatolJ is de ned as

U:Lx(Z)! Lo(V;rsin )
with
Ug(rt ( ); () =9 ( + =2);rsin ): (3.19)

It is an easy exercise to show thatis a unitary operator, hend¢¢ U =
.

LEMMA 3.4. Let X, Y1, Y, be Hilbert spacesA : X ! Y1, B :
X 1 Y, linear operators andJ : Y1 ! Y, be unitary withB = UA.
Then the reconstruction kernel for approximatibfy wheref solves
Bf = gisgiven as
=U (3.20)
where is the reconstruction kernel for approximating wheref
solvesAf = g.

PrROOF If  solvesA = L e then we get, because of the fact
thatU is unitary

B =AU U =A =Le
which completes the proof.

As a consequence it is now straightforward to calculaterstroc-
tion kernels for the fan — beam problem. We make the usuabappa-
tions in order to have the cut — off frequency independentefrecon-
struction point, see e.g.3p], to get the approximate inversion formula
with , and = b= =h as

Z
of rr 1272 -
— (x) = — a x
@x (x) 7] ., j
arcsin 1=r
-n (r 1)sin( )=2 1 ( + =2)
arcsin 1=r
g(; )cosdd
where! | is thek-th component of and = arcsin hjij—gj;a?i :

In order to test the algorithm we choose the well — known Shelppgan
phantom, where we use the densities originally given by Shepogan;
i.e., the skull has the valug and the brain has the valde( in contrast
to many authors, where these values are loweret legding to a brain
consisting of air, as in the outside of the skull ). The olgdnoside the
brain differ by1% up to3%to the surrounding tissue.
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The number of data agg= 800 source positions angl= 1024 rays per
view. The reconstruction is computed od@5 1025grid.

Figure 1 shows the result of the here derived algorithm wieetee data
5% noise was added. We observe that even the height of the jungps-i
rectly computed within the numerical approximation of tlesigatives.

Then we added to the dab&b noise.
The artefacts outside the object can easily be removed bleimgnting

the support theorem for the Radon transform stating thapibfject van-
ishes on lines parallel tonot meeting the support of the data, s [

FIGURE 1: Reconstruction with the here presented algoriitmthe
derivative with respect t®; ( left ) andx( right)

Figure 2 shows the result when we reconstructed in the cklssay
and then a smoothed derivative is applied.
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FIGURE 2: Reconstruction of the, derivative with reconstruction of
the density and smoothed derivative

As consequence we note that it pays off to combine the tws stipage
reconstruction and image analysis wherever possible.

4. Inversion Formula for the 3D Cone Beam Transform

In the following we consider the X-ray reconstruction peshlin
three dimensions when the data are measured by ring an Xkiog
emitting rays to a 2D detector. The movement of the comhinaburce
— detector determines the different scanning geometriesnany real-
world applications the source is moved on a circle aroundatbject.
From a mathematical point of view this has the disadvanthgethe data
are incomplete, the condition of Tuy-Kirillov is not fuldd. We base our
considerations on the assumption that this condition is sdf the re-
construction from real data nevertheless is then from tlhee@bdescribed
circular scanning geometry, because other data are ndalaleaio us so
far.

A rsttheoretical presentation of the reconstruction ka&liwas given
by Finch [L3]. The use of invariance properties was a rst step towards
practical implementations, se2q]. See also the often used algorithm of
Feldkamp et al. 12] and the contribution of Defrise and ClacK]] A
uni ed approach to those papers is contained3f][ The approach of
Katsevich [L9] differs from ours in that he avoids the Crofton symbol by
restricting the back projection to a range dependent onettnistruction
pointXx.
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4.1. Mathematical model. We denote witha 2  the source posi-
tion, where R3is a curve, and 2 S?is the direction of the ray.
Then the cone-beam transform of a functfo@ L,(R) is de ned as

Z,
Df(a; )= f(a+t)dt (4.2)
0

The adjoint operator as mapping frdam(R3) ! L,(  S?)is given
as

z

D gx)= kx ak 2g a—2

kx ak

da: (4.2)

Most attempts to nd inversion formulae are based on Foemula of
Grangeat rst published in Grangeat's PhD thesi$4], see also15]:

@ y4
@gf(!;s) = _Df(a; ) Xh;tiyd:  (4.3)

s=ha;! i S

Our starting point is now the inversion formula for the 3D Radrans-
form

Z
1
f(x)= g2 o @%Rf(!;s) e dl; (4.4)
that we rewrite as
zZ Z
1 @ . O .
f(x)= 57 . . @gf(!,s) s hx;!i)dsd!: (4.5)

We assume in the following that the Tuy - Kirillov conditios ful lled.
Then we can change the variables as follows: rY;s ) we denote
the Crofton symbol, i.e. the number of source poat2 such that
hg;li =s:

nl;s)=#fa2 : h!i=sg
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Settingm :1:n,V\§aget
= - ROY: fati) Yra x: 1)
8 g2
jh a;Lijm(!,_ha;!i)dad!
j 1JZJ Z(z )

= 57, Ssz(a; ) %h;!i)d

ci(h’:\z X; ! il)jha_;z! ijén(!; ha;!i)dad!

=+ -
8 2 kx ak® s2 g2

Df(a; ) qh;! i)d
o ﬁ;! ) jhactii m(l: el dadt

where we used thaf is homogeneous of degree2 and that { s) =
Ys). We now introduce th; operator

Tgt)= o) hit e (4.6)
acting on the second variable of a functig@a;! ) as

T1ag(! ) = Tag(&;!);
and the multiplication operator
M h(a; )= jha;!ij m(; ha;ti)h(!) 4.7)

and state the following result, see al&7]

THEOREM 4.1. Let the condition of Tuy-Kirillov be ful lled. Then
the inversion formula for the cone beam transform is given as
1
=572

with the adjoint operatoD of the cone beam transform aiid andM
as de ned above.

f D 1M T.Df

Note that bottD andM depend on the scanning curvewhereas
T1 only depends on the speci ¢ poiatof the scanning curve.

The above theorem allows for computing reconstruction édernto
this end we have to solve the equation

D =e;
in order to write the solution ddf = gas

f(x)=hg; (X )iy:



14 ALFRED K. LOUIS AND THOMAS WEBER

In the case of exact inversioa, is the delta distribution, in the case of an
approximate inversion formula, it is an approximation a$ ttistribution.
From the above we see that
1
D *=25D M Ty
and we can write
1

D :e:82

D TiM T:De ;

hence
1
ﬁ

5. Computing the reconstruction kernel

T]_M T1De . (48)

In the following, we will use (4.8) to derive an analytic fouha for
the reconstruction kernel in 3D. We use the Gaussian
kx yk2

e(y)=(2 ) ¥Pie 27 (5.1
as molli er (which we write as (y)) and get
TiDe (a;!;x )= %e 22l T (5.2)
ZPROOF. Following [8, p. 69], wze have

[Df](a;)o(h;!i)d = Hr fJ(he;ti! +y);!i dy:
SZ 1 ?
For the Gaussian, thiszmeans

[TiDexd(@ )= Hryed(y);!idy
L ! ~Z+a
— e(ky xk)(y x)dy;!

!?+f
2) ¥ 1 2
= —= exp( ﬁky+ zk)(y + z) dy:

We introduce a rotated coordinate system, suchl!thatone of the direc-
tions. As we only integrate oveér’ , the integral reduces to an integration
overR? and yields the mentioned result.

For the multiplication operatdvl , we need the inverse of the Crofton
symbol,m. For the speci ¢ case of a circular scanning geometry, we set
n = 2 and hencan = 1=2. Applying the operatofl; to the function in
(5.2) yields the following result.
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THEOREM 5.1. Let the scanning curve be a circle with radiuskR
and the density functioh ful lls suppf r S2:r <R . If the direction
vector 2 S?does not lie parallel to the vector a, the reconstruction
kernel can be written as

SEn _ _0

(a; ;x)= he;, i 2 ha Xx; ips
2 s
Z, (5.3)
epl[pth 1] dt + psha X; i gPalp2 1] :
0
where
_ 1 - 3= 1
= 5z C=@) 75
pp = ka x ha x i K
0 = ha x ha x i;aha i i
2 ka ha | Kka x ha x i K
p3 = A x ha x; i;a ha;ii
ps = ka ha i k:
If lies parallel tox a, then the kernel can be calculated as
(@ ;x)= zgkg ha i kK¥ha x; i: (5.4)

Theorem 5.1 provides a means for fast computations of réemns
tion kernels, eliminating the need for pre-computed kexné&he calcu-
lation of the kernel took approximately 6.6 seconds on a x8&ktbp
system with a 3 GHz CPU, the discrete kernel 654% elements.

REMARK 5.2. The circle used in theorem 5.1 does not ful ll the
Tuy-Kirillov condition, hence the theorem only provides approxima-
tive solution. With respect to the 3D Radon transform, thads to hol-
low projections. In the 2D case, uniqueness is preserved@Dithis is
subject of future research. With respect to the long objeablpm, one
additionally faces truncated projections which meansakbizr scanning
geometries, like helices are to be preferred.

6. Implementation

6.1. Invariances. As mentioned, using the approximate inverse (Al),
invariances of the operator can be used to shorten the atitmulof the
reconstruction kernel. Using our explicit formula for we easily see the
following:
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(1) The reconstruction kernel depends onlyaiax onx, i.e. only
the relative vector betweemandx is important.
(2) For the poinx = 0, we have

(Va; ;x=0)= (aV';x =0)
for every rotation matriy/ .

The second invariance is only true for the point 0. A rst step
towards a fast and easy computation of a reconstructiorekess taken
by Dietz in his PhD thesis, se8][ But whereas he used a reconstruc-
tion kernel for the 3D Radon transform and subsequentlyutated a
numerical kernel for the ray transform, we use equation) {.8erive an
analytical formula for the reconstruction for the X—rayriséorm. Us-
ing this formula, we can overcome the need for a pre-compkiedel,
which gives us more exibility.

For the approximate invariance, we de bl " to be the rotation ma-
trix that rotates2— ontoa=R, i.e.

Ta x _ a,
“ka xk R’

For real world measurement setuf, will be so "close” to the identity

matrix that we can then assurtlga = a. The reason for that is that the

radius of the sphere in which we reconstruct is (much) sméilen the

radius of the source curve. Then, instead of calculatinggbenstruction

kernel for different values of, we calculate it only fox = 0 and scale
2

- R
it by a factor ofm, see 8]

R? -
—— (a;Ux ;x =0):
@ xk (& )
Tying these invariances together, we see that we only needrtpute
the kernel once for one value afand the different ray directions The
different reconstruction pointg are taken into account by the simple
scaling factor above.

(a; ;x)

6.2. Computational complexity. With the invariances detailed in
subsection 6.1 we can implement the approximate inverdethdét very
same complexity as the FDK algorithm:

(1) Generate the Iter matrix and calculate its Fourier sfamm
(once!).
(2) For each source poiat
(a) Calculate the Fourier transform of the data matrix (that
the matrix with the measured data).
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(b) Multiply both matrices element-wise and calculate tie i
verse Fourier transform of the resulting matrix.
(3) Use these matrices for the back projection.

The only different part is the computation of the kernel 3@trnx. As
mentioned after theorem 5.1, the kernel computation takés @ few
seconds, so this part is negligible. Thus, the two algorstlare on par
with respect to their computational requirements.

In the following, we present reconstructions from real datadly
provided by Fraunhofer IzfP, Saarbriicken.

FIGURE 3: Physical phantom consisting of metal
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FIGURE 4: Reconstruction with the here presented algoritheft ) and
with Feldkamp algorithm and Shepp Logan kernel ( right ).

7. Conclusion

We have presented an exact inversion formula and deriveiladbku
numerical inversion formula from it for the circular scamgigeometry.
The numerical implementation is fast enough to no longsroala pre-
computed kernel. Instead, the kernel can be computed asopéne
measurement. As such, our method has the same numericales@myp
as the Feldkamp algorithm. However, the approximate ievees both a
better resolution and a lower noise level.

References

1. G. Backus and F. Gilbefthe Resolving Power of Growth Earth Dat&eophys. J.
Roy. Astron. Soc. 16(1968), pp. 169-205

2. J. Boman and E. T. QuintSupport theorems for real analytic Radon transforms
Duke Math. J. 55(1987), pp. 943-948.

3. S. Bonnet, F. Peyrin, F. Turjman, and R. Prktlitiresolution Reconstruction in
Fan-Beam Tomograph¥EE Transactions on Image Processing, 11 (2002),pp. 169-
176.

4. J. F. CannyA computational approach to edge detectidBEE TPAMI 8 (1986),
pp. 679-698.

5. B. ChalmondModeling and Inverse Problems in Image AnalySgringer, Berlin,
2003

6. M. E. Davison and F. A. Griinbauffomographic reconstruction with arbitrary di-
rections IEEE TNS 26 (1981), pp. 77-120



IMAGE RECONSTRUCTION AND IMAGE ANALYSIS IN TOMOGRAPHY:FANBEAM AND 3D CONE BEAM

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

M. Defrise and R. Clack cone-beam reconstruction algorithm using shift-invatia
Itering and cone-beam backprojectidBEE Trans Med Imaging 13 (1994) pp. 186—
195.

. R. DietzDie approximative Inverse als RekonstruktionsmethodeemRbntgen-

Computertomographi®h.D. Dissertation, Saarbriicken, 1999.

. U. EckhardZur numerischen Behandlung inkorrekt gestellter Aufgaamputing

17, (1976) pp. 193-206

H. W. Engl, M. Hanke M and A. Neubau&egularization of Inverse Problems
(Kluwer, Dordrecht, 1966

A. Faridani, D. V. Finch, E. L. Ritman, and K. T. Smitbcal Tomography |ISIAM

J. Appl. Math. 57 (1997), pp. 1095-1127.

L. Feldkamp, L. Davis and J. W. KreBsactical cone beam algorithrd. Opt. Soc.
America, A 1 (1984), pp. 612-619.

D. V. Finch Approximate reconstruction formulae for
the cone beam transform , | Preprint. 1987, available:
http://www.math.oregonstate.edu/ finch/papers/postco ne.pdf

P. Grangeatnalyse d'un systéme d”'imagerie 3d par reconstuctionaatp de ra-
diographies x en géométrie coniq®d.D. dissertation, Ecole Nationale Supérieure
des Téléecommunications, 1997

P. Grangeatlathematical framework of cone beam 3D reconstruction k& tst
derivative of the Radon transform: G. T. Herman, A. K. Louis and F. Natterer
(eds): Mathematical methods in tomography, springer Lrediotes in MAthemat-
ics 1991, pp. 66-97.

I. Hazou and D. C. Solmdnversion of the exponential X-ray transform. I: Analysis
Math. Mth. Appl. Sci. 10 (1988), pp. 561-574.

B. Jahnémage Processing for Scienti ¢ Application6RC Press, Boca Raton, 2nd
ed. 2004

P. Jonas and A. K. Louis Sobolev space analysis of linear regularization methods
for ill-posed problemd. Inv. lll-Posed Probl. 9 (2001), pp. 59-74

A. KatsevichAnalysis of an exact inversion algorithm for spiral coneate ct
Physics in Medicine and Biology, 47 (2002) pp. 2583—-2597.

A. Katsevichmproved cone beam local tomographgverse Problems, 22 (2006),
pp. 627-643

A. K. LouisAcceleration of convergence for nite element solutionshef Poisson
equation Numer. Math. 33 (1979) pp. 43-53

A. K. LouisApproximate inverse of the 3D Radon transfoMath. Meth. Appl. Sci.

5 (1983), pp. 176-185.

A. K. LouisInverse und schlecht gestellte Problerieubner, Stuttgart, 1989.

A. K. Louis Approximate inverse for linear and some nonlinear probléme&rse
Problems, 12 (1996), pp. 175-190

A. K. LouisA Uni ed approach to regularization methods for linear iflesed prob-
lems Inverse Problems, 15 (1999), pp. 489-498.

A. K. Louis Filter design in three-dimensional cone beam tomographycutar
scanning geometrynverse Problems, 19 (2003), pp. S31-S40.

A. K. LouisDevelopment of algorithms in computerized tomography. Olafsson
and E. T. Quinto: The Radon transform, Inverse Problems amdography, AMS
PSAM 63 (2006) pp. 25-42.



20 ALFRED K. LOUIS AND THOMAS WEBER

28. A. K. LouisCombining image reconstruction and image analysis with@gpliaation
to 2D tomographySIAM J. Imaging Sciences, 2008, accepted

29. A.K. Louis and P. Maas& molli er method for linear operator equations of the rst
kind, Inverse Problems, 6 (1990), pp. 427-440

30. A. K. Louis and P. MaasSontour reconstruction in 3-D X—ray CTEEE Transac-
tions on Medical Imaging, 12 (1993), pp. 764-769

31. A. K. Louis, P. Maass and A. Riedéfavelets2nd ed., Teubner, Stuttgart, 1989 and
Wiley, Chichester, 1997 ( English translation )

32. A. K. Louis, T. Weber and D. TheiSomputing reconstruction kernels for circular
3D cone beam tomographEE Trans. Med. Imaging 2008, to appear

33. D. A. Murio The molli cation method and the numerical solution of ibbged prob-
lems Wiley, Chichester, 1993

34. F. NattereError bounds for Tikhonov regularization in Hilbert spacégpl. Anal.,
18,29 - 37,1984

35. F. NattererThe mathematics of computerized tomographiiley and Teubner,
Stuttgart, 1986

36. F. Natterer and F. WibbelingMathematical Methods in Image Reconstruction
SIAM, Philadelphia, 2001

37. S. Oeckl, T. Schon, A. Knauf and A. K. Loulultiresolution 3D-computerized
tomography and its application to NDProc. ECNDT, 9 (2006)

38. E. T. QuintoRadon Transforms, Differential Equations, and Microlodalalysis
Contemporary Mathematics, 278(2001), pp. 57-68.

39. S.Zhao, H. Yuand G. Warfguni ed framework for exact cone-beam reconstruction
formulaeMedical Physics, 32 ( 2005) pp. 1712-1721.

INSTITUTE FORAPPLIEDMATHEMATICS, SAARLAND UNIVERSITY, D-SAARBRUCKEN,
GERMANY
E-mail addresslouis@num.uni-sb.de



