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Abstract This paper introduces a method to solve the inverse problem of de-
termining an unknown rate function in a partial differential equation (PDE)
based on discrete measurements of the modeled quantity. The focus is put on
a size-structured population balance equation (PBE) predicting the evolution
of the number distribution of a single cell population as a function of the size
variable.
Since the inverse problem at hand is ill-posed, an adequate regularization
scheme is required to avoid amplification of measurement errors in the so-
lution method. The technique developed in this work to determine a rate
function in a PBE is based on the approximate inverse method, a pointwise
regularization scheme, which employs two key ideas. Firstly, the mollification
in the directions of time and size variables are separated. Secondly, instable
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numerical data derivatives are circumvented by shifting the differentiation to
an analytically given function.
To examine the performance of the introduced scheme, adapted test scenar-
ios have been designed with different levels of data disturbance simulating
the model and measurement errors in practice. The success of the method is
substantiated by visualizing the results of these numerical experiments.

Keywords Inverse problem · Cell population dynamics · Partial differential
equation · Parameter estimation · Population balance equation

Mathematics Subject Classification (2000) 65M32 · 92D25 · 47A52

1 Introduction

In general, a size-structured population balance equation (PBE) models the
temporal evolution of a number distribution of particles as a function of a ’size’
variable (Ramkrishna, 2000). In a biological context, the modeled entities are
single cells, and the size variable usually reflects an intracellular state, e.g.,
cell volume, cell mass or DNA content (Henson, 2003). The usage of a PBE
to model the evolution of a cell number distribution goes back to pioneering
papers published about 50 years ago (Eakman et al., 1966; Tsuchiya et al.,
1966; Bell and Anderson, 1967; Fredrickson et al., 1967; Sinko and Streifer,
1967; Bell, 1968; Ramkrishna et al., 1968; Anderson et al., 1969; Sinko and
Streifer, 1969; Subramanian et al., 1970; Sinko and Streifer, 1971). There have
been many generalizations and enhancements since then, for instance by Metz
and Diekmann (1986), Henson (2003), Sidoli et al. (2004) or Webb (2008). The
articles by Arino (1995) and Gyllenberg (2007) provide a brief history of (size)
structured PBEs. The first mathematically rigorous treatment of this class of
equations was elaborated by Diekmann et al. (1984); see also Diekmann et al.
(1983) and Heijmans (1984).
In this paper, the following PBE serves as a base for the investigation of the
inverse problem:

∂tn(t, x)︸ ︷︷ ︸
accumulation

+ ∂x

(
c(x)n(t, x)

)
︸ ︷︷ ︸

cell growth

+ b(x)n(t, x)︸ ︷︷ ︸
division

= 2

∫ ∞
x

b(ξ) q(x, ξ)n(t, ξ) dξ︸ ︷︷ ︸
birth

,

t, x > 0.

(1)

This equation or its special cases have been considered by most of the above
cited works. It has been particularly developed to model cell division, other
growth or fragmentation processes as in polymeres require modifications. In
(1), n(t, x) represents the number of cells with size x at time t. In general,
the function c ≥ 0 in the second term additionally depends on a nutrient
concentration (Henson, 2003) which is assumed to be constant in this paper. In
literature, c is referred to as growth rate having the dimension of size per time
unit (Ramkrishna, 2000). The fission or birth rate b is a frequency with SI unit
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s−1
]
. Finally, the partitioning function q describes the statistical distribution

of the mother cells content to the two daughter cells. Its unit is inverse to the
considered size dimension, i.e.,

[
kg−1

]
or
[
m−1

]
. To avoid unit considerations,

a nondimensionalization is carried out by scaling t and x by reference quantities
and substituting the functions n, c, b and q in (1) accordingly. In the following,
it is assumed that such a nondimensionalization has been applied. In order to
achieve uniqueness, (1) is supplemented with adequate initial and boundary
conditions,

n(0, x) = n0(x) , x > 0, (2)

n(t, 0) = 0 , t > 0. (3)

It has been proven under quite general conditions that for fixed x the solution
n(t, x) of the system (1)–(3) grows asymptotically like eλt for t → ∞. In a
biological context, the positive constant λ is referred to as Malthus parame-
ter. Details concerning the asymptotic behavior in the general case have been
investigated by Doumic-Jauffret and Gabriel (2010); for specific cases see the
articles by Michel et al. (2005), Perthame and Ryzhik (2005) or Laurençot and
Perthame (2009) as well as the book by Perthame (2006).
According to Doumic-Jauffret and Tine (2011), the functions c and q in (1)
can be determined experimentally, in contrast to the birth rate b. Therefore,
the current paper aims at developing an algorithm to approximate b for given
c, q and n0, where measurements of n serve as input. This data consists of his-
tograms of the number distribution being measured at several points in time
by a cell flow cytometer (Abu-Absi et al., 2003; Liu et al., 2007; Banks et al.,
2011).
From a biological viewpoint, the knowledge about the birth rate is crucial for
two reasons. Firstly, if all coefficient functions are known, the direct problem
can be solved. This means that the system (1)–(3) can be used to predict the
evolution of a cell population in a real application. Secondly, the determination
of b from real data sets can be used to validate model assumptions concerning
the shape of this function.
Inverse problems of this type automatically arise in biological, medical or
biotechnological applications. The common task of these problems is to find
rate functions or parameters in an equation modeling the evolution of a cell
population. Several references in connection with structured PBEs that focus
on rate determination in order to fit real data sets are provided by Mancuso
et al. (2010a). Recently, cell number distributions of human umbilical vein en-
dothelial cells have been used to approximate variable coefficients in a PBE of
the form (1), and moreover, the influence of different drug additions has been
analyzed (Mancuso et al., 2010b). Banks et al. (2011) employ a simplified ver-
sion of (1) to model the dynamics of human peripheral blood mononuclear cells
and, based on flow cytometry data of this cell line, determine the proliferation
as well as the death rate. A similar problem in immunology has been consid-
ered by Luzyanina et al. (2007) who also emphasize the necessity of schemes to
reconstruct unknown quantities in PBEs in order to provide a more thorough
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understanding of cellular processes. In a recent paper by Kolewe et al. (2012),
equation (1) has been employed to model aggregation dynamics of taxus cell
cultures. This application in botanics aims at adjusting a parameter set in or-
der to fit the simulated data to the measurements. Its goal is to understand the
intra- and intercellular relations helping to control and optimize processes in
biotechnological engineering. Further usages of structured PBEs can be found
in articles by Henson (2003), Sidoli et al. (2004) and Doumic et al. (2010).
These are just a few examples from a biological context that underline the
importance of the development of efficient and stable schemes to compute un-
known rate functions in PBEs of the type (1) or certain variations. A standard
solution technique would be the discretization of the searched-for function fol-
lowed by a least squares approach, which can be handled by optimization
routines. Depending on the resolution of the approximation, this procedure
usually leads to high-dimensional minimization problems, the solution of which
can produce inaccurate results or consume a lot of time. The developed novel
method in this paper differs entirely from this well-known concept. Though be-
ing a significant enhancement of the basic algorithm developed by Groh et al.
(2011), it still has potential for several generalizations which will be explained
in detail later on.
The solution of inverse problems in connection with structured PBEs has
been pioneered by Rundell (1989, 1993), Pilant and Rundell (1991a,b) and
Engl et al. (1994) in a series of publications. All these papers deal with age-
structured cell population dynamics modeled by first order hyperbolic PDEs.
The structure of that type of equations differs somewhat from the PBE in this
paper, yet the determination of the searched-for rate function requires an ade-
quate regularization as well if noisy data serve as input. An inverse problem of
age-structured population dynamics that involves cell reproduction by fission
has been investigated by Gyllenberg et al. (2002, 2003).
Before going into details how the birth rate can be approximated, a brief
summary of the investigated problem and the proposed solution method is
expounded in the following. The considered PBE can be written in the form

A(bn) = Dn, (4)

where n is assumed to be given and b is the searched-for rate function. In (4),
the operator A is of dilation type, and D represents a first order differential
operator. This equation can be further condensed to

Af = g (5)

with auxiliary function f = bn and data function g = Dn. The employed
approximate inverse method generates an approximation fγ to the solution of
(5), which can be written as inner product of g with a calculable function Ψxγ ,
the so-called reconstruction kernel :

fγ : x 7→
〈
Ψxγ , g

〉
.
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This representation opens up the possibility for the consecutive step. Its key
idea is to insert the definition of g and shift the differential operator from n
to Ψγ by employing the properties of the inner product,

fγ : x 7→
〈
Ψxγ , g

〉
=
〈
Ψxγ ,Dn

〉
=
〈
D∗Ψxγ , n

〉
, (6)

where D∗ denotes the dual operator of D.
In practice, n can be measured only at finitely many points, and the values are
corrupted with noise. Avoiding the differentiation of n according to (6) implies
a considerable improvement of stability and thus of the solution quality. As
mentioned above, the actual task is to determine b which can be achieved by
employing the relation

b n = f ≈ fγ .

If the auxiliary function fγ has been determined, b can be simply calculated
by pointwise division of fγ by n. However, for data points n ≈ 0 this naive
approach should be avoided.
All techniques to solve the particular problems of the single solution steps
are detailed in this paper, which is organized as follows. Subsequent to this
introduction, the investigated inverse problem is precisely formulated and ab-
stracted in a general notation. Section 3 presents the concept of the approxi-
mate inverse method which serves as a base for the developed reconstruction
algorithm. The following Section 4 addresses the theoretical analysis of the in-
verse problem and introduces appropriate function spaces. Section 5 elaborates
the reconstruction method leading to Theorem 1 providing an explicit charac-
terization of the regularized solution where the instable differentiation of the
data function is circumvented. Section 6 establishes the regularization prop-
erty of the proposed method as well as convergence rates with respect to the
data error. Concluding the algorithmic part, Section 7 covers some practice-
oriented implementation issues. Subsequent to the introduction of the test
problems, Section 8 illustrates and analyzes the numerical reconstructions for
different scenarios and parameter choices. Finally, Section 9 draws conclusions
from the results and provides an outlook on upcoming projects.

2 Problem formulation

Basically, this paper covers the inverse problem of determining the unknown
rate function arising in a PBE that models cell population dynamics under the
assumption of equal partitioning as considered by Arino (1995), Sidoli et al.
(2004) and Perthame (2006). This means that during fission, the size of a
mother cell is equally distributed to the two daughter cells. In consequence,
the integral term in (1) simplifies to a dilation term:

∂tn(t, x) + ∂x

(
c(x)n(t, x)

)
+ b(x)n(t, x) = 4b(2x)n(t, 2x),

x ≥ 0, t ≥ 0.
(7)
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This approach has been widely employed to model equal mitosis, e.g., by Sinko
and Streifer (1971), Diekmann (1984), Diekmann et al. (1984), Liou et al.
(1997) and Perthame (2006). Theorem 4.3 in the book by Perthame (2006)
states that the system (7), (2), (3) has a unique solution n ≥ 0 with

‖n(t, ·)‖L1(R+) =

∫ ∞
0

n(t, x) dx ≤ ‖n0‖L1(R+) exp (B t) (8)

where B = ‖b‖L∞(R+). This estimate suggests that an L1 setting is a suitable
framework to study this inverse problem. Further results on regularity and L∞

estimates can be found in Section 4.2.1. of the same book as well as in arti-
cles by Michel et al. (2005), Perthame and Ryzhik (2005), Michel (2006a,b),
Perthame and Zubelli (2007) and Laurençot and Perthame (2009). In analogy
to Michel et al. (2005) or Doumic (2007), the PBE (7) is generalized by con-
sidering a time-dependent birth rate b(t, x). In most models concerning cell
division, it suffices to assume that the birth rate is a function of the scalar size
variable only, b : R+ → R+. However, the univariate case is obviously included
in the general case examined here. Consequently, the system investigated in
this paper reads as

4b(t, 2x)n(t, 2x)− b(t, x)n(t, x) = ∂tn(t, x) + ∂x

(
c(x)n(t, x)

)
,

x ≥ 0, t ≥ 0,
(9)

n(t, 0) = 0, t > 0, (10)

n(0, x) = n0(x), x > 0. (11)

Following the strategy of Groh et al. (2011), an auxiliary function f is defined
as f(t, x) = b(t, x)n(t, x). Likewise, the data terms are combined to a function

g(t, x) = Dcn(t, x) (12)

with the linear differential operator

Dc = ∂t + ∂xc. (13)

Furthermore, let I denote the identity and

Tf(t, x) = 4f(t, 2x) (14)

the multiple of a dilation in the size variable. The operator A is defined by

A = T − I (15)

and the primary task is to solve Af(t, x) = g(t, x). The analogous inverse
problem focusing on the corresponding steady state equation of (9), has first
been considered by Perthame and Zubelli (2007). For c = 1, the equation for
the stable cell number distribution N reads as

4b(2x)N(2x)− b(x)N(x) = N ′(x) + λN(x), (16)
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where b is the birth rate and λ > 0 the Malthus parameter as before. Ob-
viously, by defining f̃(x) = b(x)N(x), the same dilation operator as in (15)
emerges. Moreover, both the data function (12) and the right hand side of (16)
involve derivatives of the number distribution, hence the problem statements
are similar.
It has been shown by Perthame and Zubelli (2007) that under the regularity
condition N ′ ∈ Lp(R+) for p ≥ 1, the problem of determining b in (16) is
well-posed. They further argue that the aforementioned regularity of N can-
not be assumed due to the unavoidable measurement errors, and therefore the
data N is merely expected to lie in Lp. An analogous analysis of the inverse
problem and its regularization has been continued by Doumic et al. (2010),
Doumic-Jauffret and Tine (2011) and Doumic-Jauffret et al. (2012) for more
general PBEs, i.e., with integral term and non-constant growth rate c.
Prior to the introduction of the solution technique, the inverse problem is
analysed with regard to appropriate function spaces and mapping properties
of the involved operators.

3 Approximate inverse method

Let A : X → Y be a bounded linear operator between two Banach spaces X
and Y of functions on a domain Ω ⊂ Rd. The task is to solve the equation
Af = g for a given function g ∈ Y . In practice, the problem of determin-
ing f is usually ill-posed, and therefore an adequate regularization is required
(Louis, 1989). The approximate inverse method, being a pointwise regulariza-
tion scheme, is based on two key ideas (Louis, 1996, 2011; Schuster, 2007;
Schuster and Schöpfer, 2010).
Firstly, the sought-for function f is replaced with fγ defined by fγ(x) =

〈
f, δxγ

〉
.

In this definition, the square brackets denote the dual product on X×X∗, and
the so-called mollifier δxγ represents an approximation of δx, the Dirac delta
distribution for the point x. To be more precise, δxγ has to fulfill the condition
that for all f ∈ X, the approximate version fγ is an element of X and con-
verges to f with respect to the norm on X for γ → 0.
Secondly, δxγ is employed to define an auxiliary problem

A∗ψxγ = δxγ , (17)

where A∗ denotes the dual operator of A. In the special case of X and Y being
Hilbert spaces, A∗ is the usual adjoint. It can easily be verified that then〈

g, ψxγ
〉

=
〈
Af, ψxγ

〉
=
〈
f,A∗ψxγ

〉
=
〈
f, δxγ

〉
= fγ(x). (18)

Thus, fγ can be written as an inner product of the data g with the function ψxγ
referred to as reconstruction kernel. As a solution of (17), it is solely character-
ized by A∗ and δxγ and does therefore not depend on the data. Consequently,
this quantity can be pre-calculated and, according to (18), merely the dual
product

〈
g, ψxγ

〉
has to be evaluated in order to compute a regularized solu-

tion fγ(x) ≈ f(x).
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The application of the delineated technique to the current problem requires
adequate reformulations. The idea is to take advantage of a separation ap-
proach and to apply the algorithms developed by Groh et al. (2011) to each
factor separately. This strategy is elaborated in detail in Section 5.

4 Analysis of the inverse problem

As mentioned above, the crucial step is to determine f as the solution of

(T − I)f = Dcn, (19)

where T and Dc are given by (14) and (13), respectively. In the following, the
properties of the operator T are investigated. Since T acts merely on the x-
variable, the time dependence is dropped for the sake of readability readability,

(T − I) : L1(R+) −→ L1(R+), (T − I)φ(x) = 4φ(2x)− φ(x).

Lemma 1 The inverse operator (T − I)−1 : L1(R+) → L1(R+) exists and is
bounded with ∥∥ (T − I)

−1 ∥∥
L1(R+)→L1(R+)

≤ 1. (20)

Proof Obviously, the inverse of Tf(x) = 4f(2x) is

T−1 : L1(R+) −→ L1(R+), T−1φ(x) =
1

4
φ
(x

2

)
.

The definition of the L1 norm and a simple variable transformation gives∥∥T−1φ∥∥
L1(R+)

=
1

4

∫ ∞
0

∣∣∣φ(x
2

)∣∣∣ dx =
1

2

∫ ∞
0

|φ (x)| dx =
1

2
‖φ‖L1(R+) .

Thus, the operator norm of T−1 is equal to 1/2, and the inverse of I − T−1 is
given by the Neumann series (Yosida, 1995)

(
I − T−1

)−1
=

∞∑
i=0

T−i.

The application of T−1 on both sides yields the explicit representation

(T − I)
−1

=

∞∑
i=1

T−i

and the geometric series gives the claimed estimate of the operator norm. �

It follows immediately that for f, g ∈ L1(R+), the problem of solving the linear
equation

(T − I)f = g
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is well-posed. In (19), the right hand side is Dcn. Accordingly, the problem
of determining f(t, ·) = b(t, ·)n(t, ·) ∈ L1 (R+) is well-posed if Dcn(t, ·) ∈
L1 (R+). Roughly speaking, this condition says that also the partial deriva-
tives of n have to be L1 functions with respect to x. In a precise mathematical
formulation, this leads to the introduction of an appropriate Sobolev space as
elaborated in the following.
For fixed x, n(t, x) grows exponentially as a function of t (Perthame and
Zubelli, 2007), thus this function is not integrable with respect to t on R+.
Likewise, since all functions in (9) are continuous, ∂tn(·, x) is also continu-
ous but not integrable on R+. Instead, it is assumed that these functions are
integrable on a finite time interval [0, T ] for some fixed T > 0. The correspond-
ing function space is defined as the Sobolev space W 1,1

T = W 1,1
(
[0, T ] × R+

)
equipped with the norm

‖f‖W 1,1
T

=
∑
|α|≤1

‖Dαf‖L1([0,T ]×R+) .

Under the additional condition that c and c′ are bounded, it follows immedi-
ately from Lemma 1 and the fact that Dc is a first order differential operator
that the problem of determining f from Dcn = (T − I)f is well-posed. In
practice, however, such a regularity conjecture for the data function n is too
strong due to unavoidable measurement errors, finite sampling sizes and other
disturbances. The more reasonable assumption n ∈ L1(R+) leads to an ill-
posed problem due to the data differentiation (Louis, 1989; Engl et al., 1996),
hence an appropriate regularization has to be developed.
Furthermore, with regard to the original problem, the determination of the
birth rate b, an additional difficulty arises. Obviously, once the auxiliary func-
tion f = bn is determined, b can simply be calculated by pointwise division,

b(t, x) = f(t, x)/n(t, x). (21)

It has been shown by Perthame and Zubelli (2007) that for every t, the values
of n(t, x) are rapidly decaying for large x,

lim
x→∞

n(t, x) = 0,

and the boundary condition stipulates n(t, 0) = 0. From a theoretical point
of view, this does not cause considerable problems since b(t, ·) ∈ L∞(R+) and
f(t, ·) shows the same asymptotic behavior as n(t, ·) for t→ 0 and for t→∞.
However, with regard to the algorithm development in a discrete setting, these
properties of n for x ≈ 0 and for x→∞ have to be taken into account because
in these regions small reconstructions errors of f can be enormously amplified
if the nominator in (21) is close to 0.
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5 Solution of the inverse problem

The preceding section has shown that a regularization scheme is required to
stably solve

Af = Dcn

with A = T − I for discrete and error-prone data n. In the following, the
approximate inverse method as introduced in 3 is concretized to the current
setting, and an analytical expression for the reconstruction kernel is derived.
According to (17), the auxiliary problem reads as

A∗Ψ (t,x)
γ = δ(t,x)γ , t, x > 0 (22)

and the mollified solution is

fγ(t, x) =
〈
Dcn, Ψ

(t,x)
γ

〉
L1

T×L∞T
, (23)

where L1
T = L1

(
[0, T ] × R+

)
with its dual being L∞T = L∞

(
[0, T ] × R+

)
. An

elementary calculation yields that the dual operator A∗ is given by

A∗v = (T ∗ − I)v with T ∗v(t, x) = 2v
(
t,
x

2

)
.

Obviously,A andA∗ act only on the size variable which motivates the following
separation approach

Ψ (t,x) (τ, ξ) = Ψ tγ1(τ)Ψxγ2(ξ) , δ(t,x) (τ, ξ) = δtγ1(τ)δxγ2(ξ). (24)

Inserting into (22) and sorting the terms gives

Ψ tγ1(τ)A∗Ψxγ2(ξ) = δtγ1(τ)δxγ2(ξ)

with A standing for the time-independent version of A. Comparison of the
factors yields

Ψ tγ1(τ) = δtγ1(τ)

and the univariate equation

A∗Ψxγ2(ξ) = δxγ2(ξ). (25)

Lemma 2 The inverse operator A−∗ = (T ∗ − I)−1 : L∞(R+) → L∞(R+)
exists and is given by

A−∗v(x) =

∞∑
k=1

2−kv
(
2kx
)
.
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Proof The operator A∗ can be factorized as

T ∗ − I = T ∗
(
I − T−∗

)
. (26)

It is easy to see that the inverse of T ∗ is T−∗v(x) = 1
2v (2x). Since obviously,∥∥T−∗∥∥ = 1/2, the inverse of

(
I − T−∗

)
is given by the Neumann series

(
I − T−∗

)−1
=

∞∑
k=0

(T ∗)
−k

and (26) and the definition of T ∗ conclude the proof. �

Let now the one-dimensional mollifiers for both t and x, respectively, be of
convolution type, i.e. of the form

δxγ (ξ) = δγ(x− ξ) = γ−1 δ̄

(
x− ξ
γ

)
. (27)

For simplicity, it is assumed that the same generating function δ̄ ∈ L1(R) is
used for both variables. This relation can be written in short as δxγ = T xδγ =

γ−1T xDγ δ̄ with the translation and dilation operators

T xf(ξ) = f(x− ξ) and Dγf(x) = f(γ−1x). (28)

From Lemma 2, it follows immediately that

Ψxγ2(ξ) =

∞∑
k=1

2−kδxγ2
(
2kξ
)

=

∞∑
k=1

2−kδγ2
(
x− 2kξ

)
, (29)

and that the approximate solution (23) is also given by a convolution:

fγ(t, x) =
〈
Dcn, δ

t
γ1Ψ

x
γ2

〉
L1

T×L∞T
=

∫ T

0

∫ ∞
0

Dcn(τ, ξ) δγ1(t− τ)Ψγ2(x− ξ) dξ dτ.

(30)

In the inner integral, the derivative part of the operator Dc can be shifted to
δγ1 and Ψγ2 by means of integration by parts. Furthermore, to make the above
calculation rigorous, the integral kernel must have a certain regularity. Both
aspects are addressed in the following theorem.

Theorem 1 Let the generating function δ̄ of both mollifiers δtγ1 and δxγ2 be an
element of the Sobolev space W 1,1(R). Then the convolution kernel Ψγ(t, x) =
δγ1(t)Ψγ2(x) in (30) satisfies Ψγ ∈ W 1,1([0, T ] × R+). Furthermore, the ap-
proximate solution fγ lies in L1

T and has the representation

fγ(t, x) = δγ1(t− T )

∫ ∞
0

nT (ξ)Ψγ2(x− ξ) dξ − δγ1(t)

∫ ∞
0

n0(ξ)Ψγ2(x− ξ) dξ +∫ T

0

∫ ∞
0

n(τ, ξ)
(
δ′γ1(t− τ)Ψγ2(x− ξ) + c(ξ) δγ1(t− τ)Ψγ2(x− ξ)

)
dτ dξ,

(31)

where n0 = n(0, ·) and nT = n(T, ·) are integrable functions on R+.
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Proof Since δ̄ ∈W 1,1(R), the temporal part δγ1 of the kernel and its derivative
are integrable by definition. For the x part, it holds

‖Ψγ2‖L1 =

∥∥∥∥ ∞∑
k=1

2−k D2−k

δγ2

∥∥∥∥
L1

≤
∞∑
k=1

2−2k‖δγ2‖L1 =
1

3
‖δ̄‖L1 <∞ (32)

since ‖Dαf‖1 = α‖f‖1, and further

‖Ψ ′γ2‖L1 =

∥∥∥∥ ∞∑
k=1

D2−k

δ′γ2

∥∥∥∥
L1

≤
∞∑
k=1

2−k‖δ′γ2‖L1 = γ−12 ‖δ̄′‖L1 <∞, (33)

where the intertwining property ∂ξDα = α−1Dα∂ξ was used twice.
As far as the representation formula for fγ is concerned, the t and x integra-
tions in (30) can be treated separately due to Dc = ∂t+∂xc and the separation
of the integral kernel. Regarding t, it is∫ T

0

∂τn(τ, ξ) δγ1(t− τ) dτ = n(T, ξ) δγ1(t− T )− n(0, ξ) δγ1(t) +∫ T

0

n(τ, ξ) δ′γ1(t− τ) dτ

With respect to x, the same argument together with the properties n(τ, 0) = 0
and c(ξ)n(τ, ξ)Ψγ2(x− ξ)→ 0 for ξ →∞ yields∫ ∞

0

∂ξ
(
c(ξ)n(τ, ξ)

)
Ψγ2(x− ξ) dξ =

∫ ∞
0

c(ξ)n(τ, ξ)Ψ ′γ2(x− ξ) dξ.

Since the convolution of integrable functions is again integrable, the proof is
complete. �

In practical applications, shifting the differentiation from the noisy data to the
analytically given kernel can be expected to be beneficial in terms of stabil-
ity. Furthermore, from the perspective of numerical implementation, a rapidly
decaying generating function δ̄ has the advantage that the integrals can be
truncated early. Groh et al. (2011) obtained good results with the Gaussian
function, and this class of mollifiers is also appropriate for the current problem.
However, numerical experiments have revealed that mollifiers with compact
support can induce further improvements.

6 Regularization and convergence speed

The conditions under which the approximate inverse method acts as a reg-
ularization and shows a certain convergence rate in terms of the data error
have been assessed in a number of articles for different settings, among others:
L2 using singular value decomposition (Louis and Maass, 1990), semi-discrete



Rate function determination cell population dynamics 13

Hilbert space setting (Rieder and Schuster, 2000, 2003), bounded linear oper-
ators on Banach spaces (Schuster and Schöpfer, 2010) and unbounded opera-
tors with data pre-processing (corresponding to Dc in this case) (Kohr, 2013).
The proofs involve certain conditions on the mollifier and the calculated re-
construction kernel. In the following, this analysis is adapted to the current
inverse problem.

6.1 Regularization

Given data nε ∈ L1
T with ‖n − nε‖L1

T
< ε and assuming Af = Dcn, the task

is to show that ‖f − Aγnε‖1 vanishes for ε → 0 for an adequate parameter
choice γ = γ(ε), where Aγ is defined by (31). The error can be split as

‖f −Aγnε‖L1
T
≤ ‖f − fγ‖L1

T
+

‖Rγ1(n− nε)‖L1
T

+ ‖Rγ2(n− nε)‖L1
T

+ ‖Sγ(n− nε)‖L1
T
,

(34)

where the operators in the above estimate are defined as the three summands
in the order they appear in (31). The point evaluation in the t variable for
the operators R1 and R2 requires additional conditions since the inequality
‖n−nε‖L1

T
< ε does not imply the corresponding inequalities for the functions

n(0, ·) and n(T, ·). Due to their similarity, both terms can be analyzed in
common as follows.

Lemma 3 Let δ̄ ∈W 1,1(R), and let n0 = n(0, ·) and nT = n(T, ·) fulfill

‖n0 − nε0‖L1 → 0 and ‖nT − nεT ‖L1 → 0 for ε→ 0.

Then for any parameter choice γ = γ(ε) = (γ1(ε), γ2(ε)), it holds

lim
ε→0

∥∥Rγ(ε)1 (n− nε)
∥∥
LT

1
= lim
ε→0

∥∥Rγ(ε)2 (n− nε)
∥∥
LT

1
= 0.

Proof For R1, it holds

‖Rγ1(n− nε)‖L1
T
≤ ‖δγ1‖L1

∥∥(nT − nεT ) ∗ Ψγ2
∥∥
L1

≤ 1

3
‖δ̄‖2L1‖nT − nεT ‖L1

according to (32). The estimate for R2 can be proven with exactly the same
argument. �

For the operator Sγ , the following result can be obtained with similar tech-
niques.

Lemma 4 Let γ = γ(ε) = (γ1(ε), γ2(ε)) be a parameter choice with the asymp-
totics γj(ε) ∼ εsj for ε→ 0 with sj < 1 (j = 1, 2). Then the error contribution
of Sγ in (34) satisfies

lim
ε→0

∥∥Sγ(ε)(n− nε)∥∥
LT

1
= 0.
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Proof The operator Sγ can be written more compactly with the tensor prod-
uct notation

(f1 ⊗ f2)(t, x) = f1(t) f2(x) and (S ⊗ T )(f1 ⊗ f2) = (Sf1)⊗ (T f2)

for functions and operators, respectively. It follows that

‖Sγ(n− nε)‖L1
T
≤ ‖n− nε‖L1

T
‖δ′γ1 ⊗ Ψγ2‖L1 + ‖c(n− nε)‖L1

T
‖δγ1 ⊗ Ψ ′γ2‖L1

= ‖n− nε‖L1
T
‖δ′γ1‖L1‖Ψγ2‖L1 + ‖c(n− nε)‖L1

T
‖δγ1‖L1‖Ψ ′γ2‖L1

= ‖n− nε‖L1
T

1

3
γ−11 ‖δ̄′‖L1‖δ̄‖L1 + ‖c(n− nε)‖L1

T
γ−12 ‖δ̄‖L1‖δ̄′‖L1

≤ max{1, ‖c‖L∞}‖δ̄‖L1‖δ̄′‖L1(γ−11 + γ−12 )‖n− nε‖L1
T
.

Since for the given parameter choice γ(ε), the factor γ1(ε)−1 + γ2(ε)−1 grows
slower than ε−1, the above error term converges to zero for ε→ 0. �

The results of this section can be summarized in the following theorem.

Theorem 2 Let f ∈ L1
T solve Af = Dcn for n ∈ W 1,1

T . Let further nε ∈ L1
T

be the given data with

‖n− nε‖L1
T
≤ ε, ‖n0 − nε0‖L1 ≤ ε and ‖nT − nεT ‖L1 ≤ ε.

If the parameter choice γ(ε) = (γ1(ε), γ2(ε)) satisfies

γj(ε) ∼ εsj for ε→ 0 with 0 < sj < 1, j = 1, 2,

the approximate solution fγ(ε) as defined in (31) converges to f in L1
T for

ε→ 0.

Proof The positivity of the exponents sj ensures that γj(ε) → 0 for ε → 0,
and thus the approximation error ‖f − fγ(ε)‖L1

T
vanishes in the limit of exact

data. Together with Lemmas 3 and 4, this proves the claim.

6.2 Convergence speed

The qualitative statement of the previous section that the total reconstruction
error tends to zero for ε→ 0 can be made quantitative by studying the rate of
this convergence. Since the error behavior the for data parts as analyzed in the
Lemmas 3 and 4 is already given quantitatively, the only remaining part is the
approximation error ‖f − fγ(ε)‖L1

T
. This term depends on the exact solution

and the chosen mollifier but not (directly) on the data, hence the convergence
rate can be adjusted by using mollifiers with certain properties.
Schuster and Schöpfer (2010) establish estimates of ‖f−fγ‖ in terms of powers
of γ for the approximate inverse method in the case of Lp functions on compact
sets. The assumption of compact support for the unknown function as well as
for the mollifier is essential in their proof, and the argument cannot simply
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be generalized for unbounded support. Therefore, a similar technique using
slightly more careful estimates is presented here. The one-dimensional case is
treated in detail, while only the key ideas for the generalization to the two-
dimensional case are presented.

Lemma 5 Let f ∈ L1(R+) decay as x−1−r with r > 0 for x → ∞. Further-
more, its continuation f0 by zero to R be m-times continuously differentiable
with bounded m-th derivative for some m ≥ 0. Let additionally the generating
function δ̄ of the one-dimensional mollifier fulfill the moment conditions∫

R
xk δ̄(x) dx = 0 for k = 1, . . . ,m− 1, (35)

µk =

∫
R
|xk δ̄(x)|dx <∞ for k = m,m+ 1. (36)

Then the approximation error is of order m in γ.

Proof Due to the normalization property of the mollifier, it holds

fγ(x)− f(x) =

∫
R+

f(y) δγ(x− y) dy − f(x)

=

∫
R

(
f0(y)− f0(x)

)
δγ(x− y) dy

=

∫
R
δ̄(z)

(
f0(x− γz)− f0(x)

)
dz.

If the Taylor expansion of f0 around x is inserted, all terms up to order m− 1
in z vanish due to the property (35) of δ̄. Consequently, the approximation
error can be written as

‖fγ − f‖L1(R+) =

∫ ∞
0

∣∣∣∣∣
∫
R
δ̄(z)

f
(m)
0 (x̄)

m!
(−γz)m dz

∣∣∣∣∣ dx,
where x̄ is some (unknown) point between x and x − γz. The absolute value

of f
(m)
0 (x̄) is smaller than its modulus of continuity

ω
(
f
(m)
0 ; γ|z|, x

)
= sup

{∣∣f (m)
0 (y)

∣∣ ∣∣∣−γ|z| ≤ x− y ≤ γ|z|}. (37)

Due to the decay condition of f
(m)
0 , there are positive constants x0 and α such

that

ω
(
f
(m)
0 ; γ|z|, x

)
≤

{∥∥f (m)
0

∥∥
L∞

, if x− γ|z| ≤ x0,
α(x− γ|z|)−1−r, if x− γ|z| > x0.

(38)

Hence, the approximation can be further estimated as

‖fγ − f‖L1(R+) ≤
γm

m!

∫
R
|zm δ̄(z)|

∫ ∞
0

ω
(
f
(m)
0 ; γ|z|, x

)
dxdz,
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and the inner integral fulfills∫ ∞
0

ω
(
f
(m)
0 ; γ|z|, x

)
dx ≤

∥∥f (m)
0

∥∥
L∞

(x0 + γ|z|) + α

∫ ∞
x0

|x|−1−r dx

=
∥∥f (m)

0

∥∥
L∞

(x0 + γ|z|) +
α

r
x−r0 .

In consequence, the integral over z can be bounded in terms of
∥∥f (m)

0

∥∥
L∞

, r,
α, x0 and the moments µm and µm+1. This concludes the proof. �

In the two-dimensional case, the arguments have to be modified only slightly.
The following Lemma states the result, and the proof is merely sketched.

Lemma 6 Let f ∈ L1
T decay as x−1−r at infinity for some r > 0 in the

sense that there exist positive constants x0 and α independent of t such that
|f(t, x)| ≤ αx−1−r for all x ≥ x0. Furthermore, its continuation f0 by zero
to R2 be m-times continuously differentiable with bounded m-th derivative for
some m ≥ 0, and the mollifier satisfy the conditions of Lemma 5. Then it
holds

‖f − fγ‖L1
T
≤ const. · (γm1 + γm2 ),

where the constant depends on
∥∥f (m)

0

∥∥
L∞

, r, α, x0 and the moments µm, µm+1.

Proof sketch The difference between f and fγ is written as∫
R2

δ̄(z) δ̄(s)
(
f0(t− γ1s, x− γ2z)− f0(t, x)

)
dz ds.

When applying the Taylor expansion, all terms of order up to m− 1 in s and
z vanish, thus only the summands containing the powers sm and zm remain.
The one-dimensional modulus of continuity (37) is replaced with the variant

ω̃
(
f
(m)
0 ; γ|z|, x

)
= sup

{∣∣f (m)
0 (t, y)

∣∣ ∣∣∣−γ|z| ≤ x− y ≤ γ|z|, t ∈ [0, T ]
}

(39)

which can be bounded from above exactly as in (38). The remaining part is a
straightforward generalization of the one-dimensional analysis. �

This result can now be combined with the quantitative estimates of Section
6.1 to a convergence rate for the total reconstruction error.

Theorem 3 Let f ∈ L1
T satisfy the conditions of Lemma 6 and solve Af =

Dcn for some n ∈W 1,1
T . Let further the disturbed data nε ∈ L1

T be as in Theo-
rem 2. The regularization parameter γ(ε) = (γ1(ε), γ2(ε)) be chosen according
to γj(ε) ∼ εsj with 0 < sj < 1 (j = 1, 2). The exponents which lead to the same
asymptotics of approximation and data errors are then given by sj = 1

m+1 , and
the error behaves like

‖f −Aγ(ε)nε‖L1
T
∼ ε

m
m+1 (ε→ 0)

for this parameter choice.
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Proof The total reconstruction error has the asymptotic behavior

‖f −Aγ(ε)nε‖L1
T
∼ εms1 + εms2 + ε1−s1 + ε1−s2

according to Theorem 2 and Lemma 6. The exponents of the respective terms
in s1 and s2 are equal if msj = 1 − sj which is equivalent to sj = (m +
1)−1. Inserting this value into the total error asymptotics yields the claimed
behavior. �

7 Implementation issues

After establishing and analyzing the key concept to solve the inverse problem,
the focus can now be turned to specific aspects of the numerical implementa-
tion.

7.1 Choice of the mollifier

According to Theorem 1, the generating function δ̄ of the mollifiers has to
lie in W 1,1(R), and vanishing moments lead to a certain convergence rate of
the approximation error according to Lemma 6. In this work, two different
functions are considered: the Gaussian mollifier and a truncated polynomial
mollifier with compact support.

7.1.1 Gaussian mollifier

This alternative has been successfully employed by Groh et al. (2011) to solve
the inverse problem based on steady state data of the system (9)–(11). This
mollifier has the generating function

δ̄(x) =
1√
2π

exp

(
−x

2

2

)
, x ∈ R. (40)

Obviously, δ̄ is continuously differentiable, and since it is a positive and even
function, all odd moments vanish and all even moments are positive. Hence,
the Gaussian kernel satisfies the moment conditions of Lemma 5 with m = 2
and leads to a total error asymptotics of ε2/3 if the regularization parameter
choice asymptotically fulfills γj(ε) ∼ ε1/3.
Since there is no closed expression for Ψxγ2(ξ), its implementation requires
an adequate truncation of the series in (29) and its derivative. Fortunately,
numerical experiments have revealed that after at most 20 addends there is
no change in the digits of the sum value even in double precision and by
summation in reverse order. This allows for a fast and stable computation of
the reconstruction kernel.
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7.1.2 Truncated polynomial mollifier

Amongst various alternatives, the mollifier with the compactly supported gen-
erating function

δ̄(v) =
15

16
max{(1− x2)2, 0} (41)

has been suggested by Schuster (2007). An elementary calculation shows that
δ̄ ∈ C10(R) and that this kernel is of the same order m = 2 as the Gaussian
function. The corresponding reconstruction kernel in (29) and its derivative
are represented by sums with a maximum of

⌊
log
(
u+γ
v

)
/ log(2)

⌋
+ 1 non-

vanishing terms. In addition, the reconstruction kernel in (29) inherits the
compact support property from the mollifier since for fixed u, there is a v∗
such that for all v > v∗ and k ≥ 1, it holds

∣∣u− 2kv
∣∣ > γ, which means that

δuγ
(
2kv
)

= 0 according to (41).

7.2 Data preprocessing

As stated in Section 2, the actual task is to determine the birth rate b from
discrete measurements of the number distribution. From a mathematical view-
point, the challenging part is to reconstruct the auxiliary function f defined
as the product of n and b. Once f has been computed, b can be obtained by
pointwise division (see (21)):

b(t, x) = f(t, x)/n(t, x). (42)

However, especially for values n(t, x) ≈ 0 a significant noise amplification is
observable such that a data smoothing can be viewed as compulsory to stabi-
lize the determination of b according to (42). Moreover, as detailed by Groh
et al. (2011), it is beneficial to employ the adequately preprocessed data al-
ready for the computation of fγ .
It is widely known that there are several alternatives in the choice of a func-
tion approximation or regression scheme. Groh et al. (2011) successfully apply
an approximation in a reproducing kernel Hilbert space with radial Wendland
kernels (Wendland, 2005) to smooth a univariate histogram. On the one hand,
with this technique, it is easy to incorporate certain a priori information about
the data like boundary values or the asymptotics of the data function. On the
other hand, a rigorous error analysis in the above mentioned article has re-
vealed a strategy to select the adequate regularization parameter γ.
In this paper, the data function n is bivariate, which suggests the use of an
accordant approximation scheme. However, in practical applications it is tech-
nically not possible to gather data sets at many points in time. For instance,
relevant time series measurements as illustrated by Banks et al. (2011) show
that the number of sample points in the direction of the size variable is very
large compared to the time axis. Thus, the data points in the t-x plane are
located along a small number of line segments parallel to the x axis. Hence,
for fixed t, the data preprocessing of Groh et al. (2011) is adopted, such that
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merely a smoothing in the direction of the size variable is implemented. Since
the corresponding algorithm is detailed there, the interested reader is referred
to this article (see also the textbook of Wendland (2005) for a comprehen-
sive introduction). In addition, other data smoothing techniques, for example,
Savitzky-Golay filters, spline smoothing, etc. would also be applicable as the
good performance of the reconstruction scheme does not originate from the
specific choice of the regression method. This is briefly discussed in Section 9.
In the following, whenever the approximated data function n is considered,
this quantity itself as well as the corresponding reconstructions fγ and bγ are
additionally indexed with a µ.

7.3 Numerical solution of the forward problem

In order to test input data for the reconstruction method, the forward prob-
lem has to be solved. In particular, the function n is to be determined as a
numerical solution of the system (9)–(11) for given rates b, c and initial value
n0.

Remark 1 Since the purpose of the numerical tests does not consist in the
model evaluation but rather in the assessment of the regularization and ap-
proximation properties of the introduced inversion scheme, the data are sim-
ulated with the simplified set of equations (9)–(11).

In this paper, the explicit finite difference method introduced by Mantzaris
et al. (1999), a combination of the Leapfrog and the Lax-Friedrichs schemes,
is adjusted to the current problem. Accordingly, the domain [0, T ]× [0, xmax] is
equidistantly discretized by the grid

{
(tk, xi) | k = 1, . . . ,K+ 1, i = 1, . . . , I+

1
}

with tk = (k−1)∆t, xi = (i−1)∆x and step sizes ∆t = T/K, ∆x = xmax/I.
The involved grid functions are defined as

ci = c(xi) , bki = b(tk, xi)

for the given rates c, b. The scheme has been designed to compute approxima-
tions

nki ≈ n(tk, xi)

for the searched-for quantity n. The recurrence formula for the numerical so-
lution of (9)–(11) calculates as

n
k+1/2
i+1/2 =

1

2

(
nki+1 + nki

)
− ∆t

2∆x

(
ci+1n

k
i+1 − cinki

)
− ∆t

4

(
bki+1n

k
i+1 + bki n

k
i

)
+ 2

(
bk2i+1n

k
2i+1 + bk2i−1n

k
2i−1

)
for i = 1, . . . , I + 1 and

nk+1
i = nki −

∆t

∆x

(
ci+1/2n

k+1/2
i+1/2 − ci−1/2n

k+1/2
i−1/2

)
−∆tbki nki + 4bk2i−1n

k
2i−1
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for i = 2, . . . , I + 1 with nk1 = 0 and ci+1/2 = (ci+1 + ci)/2, i = 1, . . . , I + 1. In
addition, for indices exceeding the index set related to the size variable, the
grid function values are set to zero,

nki = 0 for i > I + 1,

which is in accordance with the asymptotic behavior of n for large x values.

8 Numerical results

8.1 Test problems

This subsection addresses the concrete specification of the system (9)–(11),
the parameters of the solution scheme for the forward problem and the dis-
turbation of the data.
In analogy to Groh et al. (2011), values of n having size argument x ∈ [0, L]
with L = 4 serve as input or the reconstruction procedure. However, to take
the dilated term in (9) into account, the forward problem is solved on the
extended domain [0, 2L] and the values at points x ∈ (L, 2L] are neglected
afterwards. The temporal domain is set to [0, T ] for a T > 0 as before.
The initial value in (10) is chosen to be

n0(x) = n̄xe−x
2

for x ∈ [0, 2L],

since this function exhibits adequate boundary values

n0(0) = 0 = lim
x→∞

n0(x).

The scaling coefficient is defined as

n̄ =

(∫ 2L

0

xe−x
2

dx

)−1
= 2/

(
1− exp(−4L2)

)
.

Motivated by the works of Doumic et al. (2009), Groh et al. (2011) and
Doumic-Jauffret et al. (2012), the following birth rates have been designed:

bC(t, x) = 1,

bG(t, x) = 1 + exp

{
−8

(
x− 1.5 + 0.5 cos (2πt/T )

)2
}
,

where (t, x) ∈ [0, T ] × [0, 2L]. The third birth rate is a continuous, piecewise
linear function with steep slopes in the direction of the x axis,

bL(t, x) =

 1 , 0 ≤ x ≤ ξ(t),
1 +m(t)

(
x− ξ(t)

)
, ξ(t) ≤ x ≤ ξ(t) + 0.2,

h(t) , ξ(t) + 0.2 ≤ x ≤ 2L,
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where

ξ(t) =


1.5− 4 t/T , 0 ≤ t ≤ T/4,
−0.5 + 4 t/T , T/4 ≤ t ≤ T/2,

1.5 , T/2 ≤ t ≤ 3T/4,
4.5− 4 t/T , 3T/4 ≤ t ≤ T,

m(t) =

 10 , 0 ≤ t ≤ T/2,
10 (−1 + 4 t/T ) , T/2 ≤ t ≤ 3T/4,

20 , 3T/4 ≤ t ≤ T,

h(t) =

 3 , 0 ≤ t ≤ T/2,
−1 + 8 t/T , T/2 ≤ t ≤ 3T/4,

5 , 3T/4 ≤ t ≤ T,

The birth rates bG and bL are illustrated in the Figures 2 and 6, respectively.
The growth rate is either chosen to be c(x) = α0 or c(x) = α1x with α0, α1 > 0.
In the literature, these cases are referred to as linear and exponential growth
model, respectively (Liou et al., 1997; Doumic et al., 2010). In this paper, the
following values are assumed: α0 = 1 and α1 = 0.1.
With regard to the numerical solution of the system (9)–(11), the step sizes
of the finite difference scheme in Subsection 7.3 are set to ∆x = 0.004 and
∆t = ∆x/10. The iteration is terminated after N = 5000 time steps which
means that T = 2, and, starting at t = 0, merely the values nki for k = 100∆t
are taken into account. This reflects the fact that there is a considerable time
lag between two measurements in practice. Analogously, to investigate the
influence of the sampling frequency in the direction of the size variable, the
spatial step size ∆x is increased in some additional numerical experiments
while the other parameters are kept constant. The corresponding values are
given in Table 1.
In the following, the computed set of values nki are denoted as exact data.
Once these data have been generated, the values are disturbed by relative
noise according to

nki,ε = max
{ (

1 + εU[−1,1]
)
nki , 0

}
(43)

where U[−1,1] is a uniformly distributed random variable with values in [−1, 1].
The level of noise is governed by the parameter ε > 0, and the implementation
of the maximum in (43) ensures non-negativity as required.
All reconstructions described in this paper have been computed on a standard
PC. The routines have been implemented in MATLAB, and though the code
has not been optimized, the run times for the complete reconstruction merely
range from about 20 seconds to a few minutes depending on the number of
data and reconstruction points. If the reconstruction kernel is precalculated,
just the inner products in Theorem 1 have to be evaluated resulting in a further
reduction of the computing time.
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Table 1 Varying parameter values in the numerical experiments. The other parameters
are constant and their values are given in the text. The additional index of γ2 specifies the
mollifier, C: mollifier with compact support, G: Gaussian

Exact data Minor noise Strong noise
ε 0 0.01 0.125
σ 0.001 0.001 0.01
∆x 0.004/0.04 0.008 0.004
c(x) 1/0.1x 1 1

γ1/γ2,C 0.11/0.350 (if ∆x = 0.004, c(x) = 1) 0.20/0.290
0.11/0.540 (if ∆x = 0.04 , c(x) = 1)

γ1/γ2,G 0.11/0.047 (if ∆x = 0.004, c(x) = 1) 0.15/0.075 0.15/0.06
0.11/0.200 (if ∆x = 0.04 , c(x) = 1)

0.11/0.047 (if ∆x = 0.004, c(x) = 0.1x)
0.11/0.230 (if ∆x = 0.04 , c(x) = 0.1x)

8.2 Reconstructions with exact data

The characteristic of the data depends strongly on the growth rate c in the
PBE (9). This is exemplarily illustrated in Figure 1. The linear growth model,
c(x) = 1, results in a rather broad maximum near x = 0.6. In contrast, the
exponential growth model with c(x) = 0.1x yields a sharp peak in the vicinity
of the origin, and this extreme value, as a function of t, increases more rapidly
than in the former case.
Figure 2 illustrates the birth rate bG in the form of a surface plot. The adja-
cent image, Figure 3, shows the pointwise relative error of the reconstructed
auxiliary function fG,γ given by

Erel(tk, xi) =

∣∣∣∣fγ(tk, xi)− n(tk, xi)b(tk, xi)

n(tk, xi)b(tk, xi)

∣∣∣∣ . (44)

In addition, the white curves in Figure 3 indicate the so-called trust region.
For fixed tk, this domain defines an interval [xL(tk), xU(tk)], and merely re-
constructions at x values within this segment can be considered to be reliable.
The interval limits are defined by

xL(tk) = min
i=1,...,I+1

{
xi ∈ [0, L]

∣∣nki ≥ βk} , (45)

xU(tk) = max
i=1,...,I+1

{
xi ∈ [0, L]

∣∣nki ≥ βk} , (46)

for βk > 0. In this paper, this set of parameters is chosen according to

βk = σ ·max
{
nki
∣∣ i = 1, . . . , I + 1

}
, (47)

where in the case of exact data, 1� of the maximum is taken as threshold
value, i.e., σ = 0.001.
The reconstructions of bG in the case of the linear growth model are illustrated
in Figure 4, drawing a comparison of the results for different mollifiers and for
two data sampling rates. At first, it can be observed that the scheme produces
good reconstructions for both mollifiers within the trust region if a sufficient
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(a) Numerical solution nG for the linear growth
model, c(x) = 1

(b) Numerical solution nG(t, ·) in (a) as a
function of x for fixed t values

(c) Numerical solution nG for the exponential
growth model, c(x) = 0.1x

(d) Numerical solution nG(t, ·) in (c) as a
function of x for fixed t values

Fig. 1 Numerical solution of the initial boundary problem for growth rates c(x) = 1 and
c(x) = 0.1x, respectively. In both cases the birth rate bG has been employed. The parameters
of the numerical experiments are given in Table 1 if not otherwise specified
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Fig. 2 Graphical representation of bG as a sur-
face on the t-x plane

Fig. 3 Relative error of the recon-
structed auxiliary function fG,γ in per-
cent (see (44)). For a better visualization
this pointwise error is bounded to 100%,
i.e. ”red” reflects error greater or equal to
100%. The two white curves delimit the
trust region according to (45) and (46)

number of data are available. A direct juxtaposition shows that the results
based on the mollifier with compact support are slightly better despite the
occurrence of rapidly oscillating artifacts near the upper trust region limit xU.
Figures 4(e) and 4(f) illustrate the reconstructions if only 10% of the data
points are available. The cosine function can still be identified, though the
results are significantly poorer compared to the denser data set.
Finally, Figure 5 depicts the reconstructions in the case of the exponential
growth model. A glance at the data visualization in Figure 1(c) suggests that
the trust region has to be significantly narrower for the linear growth model. In
fact, for large t, there is merely a small interval in the direction of the x axis
where the reconstruction quality can be expected to be reliable. Obviously,
the characteristics of this data function, namely the sharp peak and the rapid
decay, pose difficulties for the reconstruction scheme.

8.3 Reconstructions with moderately disturbed data

In contrast to the preceding subsection, the presence of noise requires a pre-
processing step to be applied to the data. The added relative error amounts to
a maximum of 1% in this scenario, and the threshold value to define the trust
region limits are the same as before, i.e., σ = 0.001. The other parameters
are collected in Table 1 or can be found in Subsection 8.1. This block of ex-
periments aims at reconstructing the piecewise linear birth rate bL. This test
function exhibits constant levels connected by steep rises in the x direction
(see Figures 6(a) and 6(b)). Regarding the corresponding steady state equa-
tion of (9) considered by Doumic et al. (2009) and Groh et al. (2011), such a
function is difficult to retrieve from the data. This observation transfers to the
dynamical case in this paper. The corresponding results are shown in Figures
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(a) Surface bG,γ , where the values are adequately
projected on [0,4] to improve the visualization. The
reconstruction is based on data sampled at I =
1000 points in the x direction

(b) Graph (a) from the bird’s eye
view with the trust region (white
curves)

(c) Surface bG,γ with the same setup as in (a) but
based on the mollifier with compact support instead
of the Gaussian

(d) Graph (c) from the bird’s eye
view with the trust region

(e) The same reconstruction of bG as
in (b) with merely I = 100 points
along the x axis

(f) The same reconstruction of bG as
in (d) with merely I = 100 points
along the x axis

Fig. 4 First row: Reconstruction of bG by using the Gaussian mollifier based on exact data.
Second row: Reconstruction of bG by using the mollifier with compact support. Last row:
reconstruction with reduced data points (see text). In all cases, the linear growth model has
been used to generate the test data sets
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(a) Graphical representation of bG,γ as a surface on
the t-x plane

(b) Graph of (b) from the bird’s eye
view with the trust region (white
curves)

(c) Reconstruction of bG, where
merely 10% of the data have been
taken into account

Fig. 5 The same illustrations as in the first row of Figure 4 (Gaussian mollifier), but for
exponential growth model data

6(c) and 6(e) where either the Gaussian or the mollifier with compact support
have been employed as smoothing kernels in the direction of the size variable.

Within the trust region, the essential characteristics of bL can be recognized,
though the quality is poorer compared to the preceding experiments with ex-
act data. Regarding the performance of the two mollifiers, the reconstructions
based on the Gaussian exhibit a better quality (cf. Figures 6(d) and 6(f)).

8.4 Reconstructions with strongly disturbed data

The series of experiments is completed by the consideration of strongly erro-
neous data nC,ε, where the linear growth model and the constant birth rate bC
have been used in the PBE (9). The maximal pointwise relative error amounts
to 12.5%, resulting in a highly oscillating data function. Some exemplary cross
sections of the graph of nC,ε are shown in Figure 7(a), confirming the need
to avoid a numerical differentiation in (12). The adjacent figure illustrates the
corresponding filtered curves computed in the preprocessing step (cf. Subsec-
tion 7.2). The smoothed function nC,ε,µ allows an adequate definition of the
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(a) Graphical representation of bL as a surface
on the t-x plane

(b) Graph of (a) from the bird’s eye view
with the trust region (white curves)

(c) Reconstruction bL,ε,µ,γ with the Gaus-
sian mollifier

(d) Projected relative error of the recon-
struction in (c)

(e) Reconstruction based on the mollifier
with compact support

(f) Projected relative error of the recon-
struction in (e)

Fig. 6 Reconstructions from moderately disturbed data. The parameter values of the par-
ticular mollifiers are given in Table 1
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trust region, where the parameter σ in (47) is adjusted to the value of 0.01
due to the high noise level.

(a) Noisy number distribution nC,ε at
fixed time instants as a function of x

(b) Smoothed versions of the curves in
(a). The limits of the trust interval are
indicated by arrows of the same gray lev-
els

(c) Reconstruction of bL based on the pre-
processed data. The black dots on the trust
region boundaries (black curves) indicate the
time points t = 0.4, 0.8, 1.2, 1.6

(d) Graph of the reconstruction bC,ε,µ,γ at
specific time points as a function of x

Fig. 7 Exemplary data structures in the presence of strong noise and the corresponding
results based on the Gaussian mollifier acting in the x direction

Subsequent to the preprocessing step, the prepared data have been used for
the reconstruction of bC, the results of which are depicted in the Figures 7(c)
and 7(d). Considering the large variance in the input data in Figure 7(a), the
reconstruction within the trust region is of remarkably good quality.
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8.5 Impacts of parameter variations

Step sizes ∆x and ∆t of the measuring system Assuming a fixed domain
[0, T ] × [0, L] for the data function, the fineness of the discretization plays
a crucial role. As expected, starting from a coarse grid, the amount of in-
formation employed by the reconstruction scheme can be raised by a mesh
refinement, leading to better results. In general, this rule is only valid up to
a certain step size since a too high sampling frequency can lead to numerical
instabilities due to small singular values of the forward operator.
For the sake of simplicity, the birth rates have been reconstructed at equally
distributed nodes in this paper. However, according to (31), the auxiliary func-
tion can be evaluated at any arbitrary point (t, x) ∈ R+×R+ and the sampling
of g is merely governed by the quadrature of the inner product. This can be
relaxed in part by the preprocessing step (cf. Subsection 7.2).

Regularization parameters γ1 and γ2 The usage of two mollifiers acting in dif-
ferent directions is a key concept of the introduced method. This offers the
opportunity to separately control the degree of smoothing along the two axes.
In general, a regularization parameter balances the influence of the discretiza-
tion and data errors (Louis, 1989; Engl et al., 1996), and there is a value that
minimizes the global error. Groh et al. (2011) introduce an asymptotically
optimal parameter choice for the Gaussian mollifier with regard to the corre-
sponding steady state equation of (9). More precisely, the optimal value is a
function of the sampling distance ∆x in the direction of the x axis and it is
calculated as

γ2,opt = ∆x5/9.

This concept cannot be directly adopted to the bivariate problem considered
in this paper. However, it can provide a reasonable initial guess for the regular-
ization parameter in along the x axis, which can then be fine-tuned to acquire
a visually optimal result. Moreover, since there is no theoretical need for reg-
ularization along the t axis, the corresponding parameter γ1 can be chosen in
the order of the temporal sampling distance.

9 Conclusion and outlook

This paper introduces a method to approximate an unknown rate function in a
size-structured PBE based on histograms of the modeled quantity at different
points in time. As detailed in the introduction, such inverse problems natu-
rally emerge in many biological applications. The standard solution techniques
require an a priori discretization of the searched-for functions leading to large-
scale minimization problems (Engl et al., 2009). In contrast, the introduced
regularization method provides an efficient, stable and accurate alternative
without a preceding projection onto a finite-dimensional function space. In
addition, the implementation is rather easy and straightforward, thus it has
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the potential to find its way into computer-aided real biology. In comparison
with competing algorithms by Doumic et al. (2009), Doumic-Jauffret and Tine
(2011), Doumic-Jauffret et al. (2012), Bourgeron et al. (2014) and Doumic and
Tine (2013), the approximate inverse method requires significantly less techni-
cal effort and restrictive conditions. Moreover, the development of a numerical
scheme based on the introduced approach is easier than the hybrid method
that requires a combination of two regularization techniques. Finally, the ap-
plication to similar data sets leads to suggestion that better results can be
gained by the use of the approximate inverse method. Prior to providing an
outlook on future projects, the key ideas are briefly summarized.
The initial step is to define an auxiliary function f allowing an abstraction of
the problem in the form Af = g. This suggests the application of regulariza-
tion techniques established in the area of inverse problems. Compared to other
schemes like the Tikhonov-Phillips method, the Landweber iteration, etc., the
approximate inverse method appears beneficial for two reasons. Firstly, due to
the separation approach in (24), the auxiliary problem can be reduced to the
univariate equation (25) which can be solved analytically (cf. (29)). Secondly,
the specific approach of the approximate inverse method allows the circum-
vention of the instable numerical differentiation of the noisy measurements
by shifting the derivative to the given mollifier. The employed regression in
a reproducible kernel Hilbert space has a supplemental stabilizing effect but
this is not essential for the success of the reconstruction scheme.
In general, the approximate inverse method is formulated for unbounded do-
mains. This can partly be made responsible for the poor results close to x = 0.
However, the failure at the margins of the domain originates predominantly
from the discrete data structure and from the underlying equation itself since
the quantity n(t, ·) exhibits a rapid decay for x → 0 and for x → ∞. This
can be considered as a loss of information which is confirmed by the numerical
experiments showing bad results at points x where n(t, x) ≈ 0.
It should be mentioned that the cell division model (1) involves a time-
independent birth rate, whereas in the numerical examples, the functions bG
and bL were chosen to exhibit an explicit time dependence. However, they
served a mere method evaluation purpose in that they represent the most gen-
eral case which can be treated by the proposed scheme. Clearly, temporally
constant birth rates like bC are contained as special cases. It may even be
considerable to apply temporal averages to a reconstructed function b(t, x) in
order to acquire a time-independent rate b(x). This procedure, which can be
expected to act additionally regularizing, requires however further investiga-
tion.
In practice, the measured histograms at specific times tk can be fragmentary
which results in a non-equidistant sampling of the number distribution nε(tk, ·)
of the cell population. This circumstance does not pose any noteworthy prob-
lems since the regression method allows the evaluation of nε,µ(tk, ·) at any
point x ∈ R+. Though the results for noisy data simulating the situation in
practical applications appear promising, the processing of real data has not yet
been implemented. So far, the research efforts have been concentrated on the
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algorithm development, and there has been no data interchange with biologi-
cal or medical institutes yet. In this context, the introduced method can serve
as a valuable tool with regard to parameter estimation and model validation
in practice, especially for the aforementioned examples of biological, medical
or biotechnological applications. The aim is to catch up on such interesting
projects in the future.
In this paper, the model assumption of equal partitioning has led to the sim-
plified PBE (7). The general case is the partial integro-differential equation
(1). The corresponding inverse problem for the latter class of equations re-
quires the inversion of an integral operator of the second kind. In principle,
the introduced method is supposed to be applicable to this case too. However,
since the auxiliary problem transforms to an integral equation of the second
kind, it cannot be expected any longer to be analytically solvable. Thus, an
explicit representation of the reconstruction kernel as in (29) is probably im-
possible, thus requiring a numerical approximation. In order to decrease the
computational costs, the task is to find potential operator invariances. This
allows the adaptation of the methods developed by Louis (1996) to reduce the
number of evaluation points of the reconstruction kernel.
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enbücher Mathematik. Teubner, Stuttgart.

Louis, A. K. (1996). Approximate inverse for linear and some nonlinear prob-
lems. Inverse Probl., 12(2):175–190.

Louis, A. K. (2011). Feature reconstruction in inverse problems. Inverse Probl.,
27(6):065010 (21pp).

Louis, A. K. and Maass, P. (1990). A mollifier method for linear operator
equations of the first kind. Inverse Problems, 6:427–440.

Luzyanina, T., Roose, D., Schenkel, T., Sester, M., Ehl, S., Meyerhans, A.,
and Bocharov, G. (2007). Numerical modelling of label-structured cell pop-
ulation growth using CFSE distribution data. Theor. Biol. Med. Model.,
4(26).

Mancuso, L., Liuzzo, M. I., Fadda, S., Pisu, M., Cincotti, A., Arras, M., Nasa,
G. L., Concas, A., and Cao, G. (2010a). In vitro ovine articular chondrocyte
proliferation: experiments and modelling. Cell Prolif., 43(3):310–320.

Mancuso, L., Scanu, M., Pisu, M., Concas, A., and Cao, G. (2010b). Ex-
perimental analysis and modelling of in vitro HUVECs proliferation in the
presence of various types of drugs. Cell Prolif., 43(6):617–628.

Mantzaris, N. V., Liou, J. J., Daoutidis, P., and Srienc, F. (1999). Numerical
solution of a mass structured cell population balance model in an environ-
ment of changing substrate concentration. J. Biotechnol., 71(1-3):157–174.

Metz, J. A. J. and Diekmann, O. (1986). The dynamics of physiologically
structured populations. Lecture notes in biomathematics, 68.

Michel, P. (2006a). Existence of a solution to the cell division eigenproblem.
Math. Mod. Meth. in Appl. Sci., 16(Suppl. Issue 1):1125–1154.

Michel, P. (2006b). Optimal proliferation rate in a cell division model. Math.
Model. Nat. Phenom., 1(2):23–44.

Michel, P., Mischler, S., and Perthame, B. (2005). General relative entropy in-
equality: an illustration on growth models. J. Math. Pure Appl., 84(9):1235–



34 A. Groh et al.

1260.
Perthame, B. (2006). Transport Equations in Biology. Frontiers in Mathemat-
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