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Abstract. This article provides a framework to regularize operator equations of the first kind
where the underlying operator is linear and continuous between distribution spaces, the dual spaces
of smooth functions. To regularize such a problem, the authors extend Louis’ method of approximate
inverse from Hilbert spaces to distribution spaces. The idea is to approximate the exact solution in
the weak topology by a smooth function, where the smooth function is generated by a mollifier. The
resulting regularization scheme consists of the evaluation of the given data at so-called reconstruction
kernels which solve the dual operator equation with the mollifier as right-hand side. A nontrivial
example of such an operator is given by the spherical Radon transform which maps a function to
its mean values over spheres centered on a line or plane. This transform is one of the mathematical
models in sonar and radar. After establishing the theory of the approximate inverse for distributions,
we apply it to the spherical Radon transform. The article also contains numerical results.
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1. Introduction. We apply the method of approximate inverse to the problem
of reconstructing a function from integrals over spheres. Applications of this mathe-
matical problem include sonar when the source and detector are at the same point [15],
thermoacoustic tomography for cancer detection [14], seismic testing [23], and radar.
The article [5] provides an excellent introduction to synthetic aperture radar and the
relation between spherical integrals and radar and sonar.

The approximate inverse was originally developed by Louis as a general method
to regularize ill-posed operators on Hilbert spaces [17]. It has been applied to integral
equations of the first kind [18] and tomography [27, 28]. However, the inversion
formula for our problem is valid not on Hilbert spaces but on distributions. Therefore,
we will generalize the approximate inverse to the setting of distributions. It is hoped
this generalization will be useful for other inverse problems for which the ambient
spaces are not Hilbert spaces.

In seismology or sonar the acoustic wave equation is

n2(x)utt = Δu + δ(t)δ(x− a0), where a0 ∈ A,

and A is a small section of the surface of the earth. After linearization, the determi-
nation of n2(x) from back-scattered data is equivalent to recovering n2 from integrals
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over spheres with centers on A [15]. Knowing n2 or at least an approximation to n2

can show boundaries of objects in the water. This linearized model is reasonable
from a practical standpoint when the speed of sound in the ambient water is fairly
constant. This would occur in water of depth less than 100 feet with fairly constant
temperature [3]. Since the speed of sound is constant in shallow water with constant
temperature, a pulse travels from a point source, a, making a spherical wavefront.
The sound that is reflected back to the source at time t gives the amount reflected
back from the sphere centered at a and radius t/2 times the speed of sound (assuming
no multiple reflections). See [12] for practical information about sonar.

The mathematical problem can be described as trying to recover a function by its
integrals over all spheres centered on a given line (in R

2), plane (in R
3), or hyperplane

(in R
n).

We first discuss the inversion methods that have been implemented numerically
and then the pure mathematical results behind them. Denisjuk has an inversion
method based on a transformation that changes the spherical transform into a limited
data line transform [9]. He has implemented his method with good results. Klein [13]
has developed and numerically tested a promising inversion method based on the
ideas of Andersson discussed below. Beltukov proposed a numerical inversion method
using a discrete SVD for the sonar transform [4]. He showed that the singular values
are fairly flat and then drop off precipitously, which reflects the ill-posedness of the
problem.

Our numerical reconstructions are given in section 6 and they show the potential
of our method.

Many authors have proven injectivity and inversion methods for this transform.
Courant and Hilbert [7, p. 699] proved injectivity for functions that are even about the
hyperplane. Fawcett [10] and Andersson [2] provide inversion formulas in R

n. Norton
provides an inversion method for the circular transform if the center set is a circle
in the plane [22] and if the center set is a line [21], and [23] gives three-dimensional
results. Ranges and inversion formulas on a subspace of Schwartz functions are given
in [20].

Finch, Patch, and Rakesh [11] develop an explicit inversion formula for recovering
a function from spherical integrals when the center set is the boundary of a bounded,
connected, open set in R

n. Ramm proves injectivity and inversion theorems in [26].
Fairly general uniqueness theorems are given in [1].

Louis and Quinto [19] develop the microlocal analysis of the transform when A is
a real-analytic surface (e.g., an open subset of a hyperplane), and they prove the local
transform is injective under fairly general hypotheses. They characterize singularities
(jumps, etc.) of the object that are stably visible from the data. Palamodov [24]
and Denisjuk [8] continue this microlocal analysis when S is a hyperplane, providing
instability results, inversion methods, and range theorems. Beltukov has proven an
inversion method for the transform on hyperbolic space.

Section 2 contains the extension of the method of approximate inverse to distribu-
tion spaces. In particular, we define what we mean by a mollifier in the distributional
sense. In section 3, we apply this concept to the inverse problem of inverting the
spherical Radon transform. Section 4 deals with the design of a mollifier for this
problem. The computation of the corresponding reconstruction kernel is outlined
in section 5. Section 6 provides a couple of numerical tests using synthetic Radon
data, and the proof that our functions satisfy the conditions to be mollifiers is in the
appendix.
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2. Approximate inverse in distribution spaces. In this section we extend
the method of approximate inverse as introduced by Louis and Maass [18] and Louis
[16, 17] to distribution spaces.

To this end let Ω1 ⊂ K
n, Ω2 ⊂ K

m be open sets, K = R or K = C, and
V ⊂ C∞(Ω1), W ⊂ C∞(Ω2) be subspaces which are closed in their own topology.
We denote the dual spaces (continuous linear functionals) for V and W by V ′, W ′,
respectively. Furthermore we assume A : V ′ → W ′ to be a linear mapping which is
one-to-one. The inverse problem under consideration is as follows. Given a g ∈ W ′

lying in the range A(V ′) of A, find f ∈ V ′ such that

Af = g.(2.1)

The concept of approximate inverse involves so called mollifiers. The aim is to
calculate convolutions of them with the sought solution f rather than to calculate
f itself. To extend this concept to distribution spaces V ′,W ′ we first define what we
mean by a mollifier.

Definition 2.1. For γ > 0 let eγ(·, y) ∈ V ′′ for all y ∈ Ω1 such that

〈ϕ, eγ(·, y)〉V ′×V ′′ ∈ V ′ for all ϕ ∈ V ′.(2.2)

We call eγ a mollifier if and only if

〈〈ϕ, eγ(·, y)〉V ′×V ′′ , β〉V ′×V → 〈ϕ, β〉V ′×V(2.3)

as γ → 0 for all β ∈ V .
Let V1 ⊂ V ′ and let V2 ⊂ V . Then, eγ is a (V1, V2)-mollifier if and only if (2.2)

holds for all ϕ ∈ V1 and (2.3) holds for all ϕ ∈ V1 and β ∈ V2.
In Definition 2.1 we denote the double dual of V by V ′′, and 〈·, ·〉V ′×V , 〈·, ·〉V ′×V ′′

are the corresponding dual pairings.
If eγ is a mollifier in the sense of Definition 2.3, then for f ∈ V ′,

fγ(y) := 〈f, eγ(·, y)〉V ′×V ′′ , y ∈ Ω1,(2.4)

is a distribution in V ′ which converges to f in the (weak) topology of V ′. Because
V ⊂ V ′′, eγ can be chosen from V . Thus, fγ is a kind of smooth version of f . If eγ is
a (V1, V2)-mollifier, then (2.4) holds for all f ∈ V1 and convergence holds when tested
against all β ∈ V2.

To obtain fγ from Af we consider the adjoint operator of A. Since A : V ′ → W ′ is
linear, continuous, and one-to-one, it has a linear and continuous adjoint A∗ : W ′′ →
V ′′ with dense range. Suppose that for each y ∈ Ω1 we have an element Ψγ(y) ∈ W ′′

satisfying

A∗Ψγ(y) = eγ(·, y).(2.5)

Then, fγ can be expressed as

fγ(y) = 〈f, eγ(·, y)〉V ′×V ′′ = 〈f,A∗Ψγ(y)〉V ′×V ′′

= 〈Af,Ψγ(y)〉W ′×W ′′ = 〈g,Ψγ(y)〉W ′×W ′′ ,

where g = Af are the given data. The mapping Sγ : W ′ → V ′ defined by

Sγg = 〈g,Ψγ(y)〉W ′×W ′′(2.6)

is called the approximate inverse of A; the element Ψγ(y) is the reconstruction kernel
corresponding to eγ . Thus, the approximate inverse consists of evaluations of dual
pairings of the given data g and the reconstruction kernels Ψγ(y).
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Three main features of the approximate inverse are as follows:
• The reconstruction kernels Ψγ(y) can be precomputed before the measure-

ment process starts.
• Equation (2.5) is independent of the data g and hence not influenced by noise.
• Invariance properties of A∗ help to improve the efficiency of the method, if

(2.5) has to be solved only for one single y ∈ Ω1. We will demonstrate this
in section 3.

Remark 2.2. In general, it does not follow that choosing a mollifier eγ from V
results in a reconstruction kernel Ψγ(y) ∈ W . The key is that (2.5) must have a
solution in W . If A∗(W ) ∩ V is dense in V , then this is more likely. This density
condition will happen if the adjoint A∗ maps W to V ⊂ V ′′.

In practical situations we have only finitely many measurement data available
rather than a distribution g. For this reason investigating the semidiscrete operator
equation

ANf = gN ,(2.7)

where AN = ΦN A, gN = ΦNg ∈ K
N , may fit better to that situation. Here, the

observation operator ΦN ∈ W ′′ can be, e.g., point evaluations, if A(V ′) consists of
continuous, not necessarily integrable, functions. But following the outlines of Rieder
and Schuster [27, 28] we formulate the approximate inverse of (2.7) by

Sγ,NgN (y) = 〈gN , GN ΦNΨγ(y)〉KN ,(2.8)

where Ψγ(y) is a reconstruction kernel for (2.1) and GN ∈ K
N×N is a matrix con-

taining the weights of a numerical integration rule which is applied to get the discrete
version (2.8) of the dual pairing 〈·, ·〉W ′×W ′′ . Thus, we continue in this article to focus
on the continuous problem.

Remark 2.3. Compared to the concept of approximate inverse in Hilbert spaces
as established by Louis [16], Definition 2.1 applies to more general spaces and requires
less restrictive assumptions on an element eγ to be a mollifier. The L2-theory requires
convergence of fγ(y) = 〈f, eγ(·, y)〉 → f(y) in L2 as γ → 0, but this distributional
setup requires only weak convergence. We should point out that our theory is meant
for distribution spaces and does not directly subsume the L2- or Hs-theory since these
Hilbert spaces are not closed subspaces of distribution spaces, the topologies are too
different, and their standard duals are not their duals as distribution spaces. It should
also be pointed out that this generalization to distributions is necessary for the spherical
transform since the transform does not map L2 into L2 and the inversion formula we
use applies to distributions.

3. Approximate inverse meets the spherical Radon transform. In this
section we apply the method of approximate inverse established in section 2 to the
spherical Radon transform. We use the mathematical setup of Andersson’s article [2]
and formulate some of his main results first.

We start with some notation. Throughout the paper a scalar product 〈·, ·〉 or
norm ‖ · ‖ without subscript always means the Euclidean scalar product or norm,
respectively. We denote the space of all rapidly decreasing, smooth functions by
S(Rn) and give this space the usual seminorms [29, section 7.3]. This topology turns
S(Rn) into a Fréchet space. The Fourier transform F : S(Rn) → S(Rn) and its inverse
are given by

Ff(ξ) = f̂(ξ) =

∫
Rn

f(x) e−ı 〈ξ,x〉 dx, F−1f(x) = (2π)−n

∫
Rn

f(ξ) eı 〈x,ξ〉 dξ.
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The dual space S ′(Rn) of S(Rn) is called the set of tempered distributions. Each
distribution ϕ ∈ S ′(Rn) is of finite order [29] and can be written as the derivative of
a continuous function of polynomial growth [6].

The Fourier transform gives isomorphisms on S(Rn) and on S ′(Rn). Finally, we

often write a vector x ∈ R
n+1 in the form x = (x′, xn+1)

�, where x′ = (x1, . . . , xn)� ∈
R

n contains the first n components of x and xn+1 is the last component. We will drop
the 	 when this correspondence is clear.

The spherical Radon transform R assigns a function f ∈ S(Rn+1) its mean values
over all spheres centered about (z, 0) ∈ R

n+1, z ∈ R
n with radius r ≥ 0:

Rf(z, r) =
1

ωn

∫
Sn

f(z + r ξ, r η) dSn(ξ, η) = g(z, r).(3.1)

Here, ωn is the area of the n-dimensional sphere Sn = {(ξ, η) ∈ R
n+1 : ξ ∈ R

n,
η ∈ R, ‖ξ‖2 + η2 = 1} and dSn is the surface measure on Sn.

Obviously Rf = 0 holds true for every f ∈ S(Rn+1) that is odd in the last variable:
f(x′,−xn+1) = −f(x′, xn+1). Courant and Hilbert [7] proved that the kernel of R
consists exactly of all such functions. This suggests restricting R to the subspace of
even functions in the last variable,

Se := Se(R
n+1) = {f ∈ S(Rn+1) : f(x′,−xn+1) = f(x′, xn+1)}.

Unfortunately, even if f ∈ Se(R
n+1), the image Rf does not have to be in

L2(Rn+1). In fact, if f is the characteristic function of a circle, then Rf has infi-
nite support and does not decrease at infinity. Furthermore, one can show (e.g., using
ideas in [19, 24]) that R−1 is not continuous in any range of Sobolev norms, at least
with data for bounded centers or radii (see Remark 2.3).

Identifying the radius r in (3.1) with the norm ‖w‖ of a vector w ∈ R
n+1, we

introduce the following subspace of S(R2n+1):

Sr := Sr(R
n × R

n+1)

= {f ∈ S(R2n+1) : f(z, w) = f̌(z, ‖w‖) for a function f̌ ∈ Se(R
n+1)}.

Thus, Sr(R
n × R

n+1) consists of the functions in S(R2n+1) which are radially
symmetric in the last n+ 1 variables. We will often view functions in Sr(R

n ×R
n+1)

as functions on R
n × R where we write f(z, r) = f(z, w) with r = ‖w‖, but when we

take the Fourier transform, it will be the Fourier transform on R
2n+1.

As mentioned before, we cannot expect that Rf ∈ Sr(R
n × R

n+1) even when
f ∈ Se(R

n+1). But it is easy to show that Rf ∈ S ′
r(R

n × R
n+1), the dual space of

Sr(R
n × R

n+1). By a density argument we may extend R to domain Se(R
n+1)′. The

following theorem summarizes some properties of R considered as mapping between
S ′

e and S ′
r. The proofs are in [2] or [13].

Theorem 3.1 (see [2, Theorem 2.1 and Proposition 2.2]). The spherical Radon
transform R : S ′

e → S ′
r is a linear, continuous operator which is one-to-one and has

range

R(S ′
e) = S ′

r,cone :=
{
g ∈ S ′

r : supp ĝ ⊂ {(σ, ρ) ∈ R
n × [0,∞) : ρ ≥ ‖σ‖}

}
⊂ S ′

r.(3.2)

If the Fourier transform of f ∈ S ′
e is equal to an integrable function f̂(σ, ω), then the

inversion formula

f̂(σ, ω) = cn |ω| (‖σ‖2 + ω2)(n−1)/2 ĝ(σ,
√

‖σ‖2 + ω2)(3.3)

is valid with cn = ωn/(2 (2π)n) and g = Rf .
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The adjoint operator R∗ : Sr → Se has dense range and is given by

R∗g(x′, xn+1) =

∫
Rn

g

(
z,
√

‖z − x′‖2 + x2
n+1

)
dz;(3.4)

its Fourier transform is

F R∗g(σ, ρ) = ĝ(σ,
√

‖σ‖2 + ρ2).(3.5)

Note that the right-hand side of (3.3) is the Fourier transform of the function g in
R

2n+1 that is radial in the last n + 1 variables. The reason to consider R as a map
into S ′

r(R
n×R

n+1) rather than S ′
e(R

n+1) is that the relationship between the Fourier
transform and spherical transform is easier in these spaces. The constant cn in (3.3)
differs from the corresponding constant in Andersson’s article by a factor of (2π)−n.
This inaccuracy was found by Klein [13].

In order to apply the approximate inverse (section 2) to solve the inverse problem
of finding a distribution f ∈ S ′

e satisfying

Rf = g(3.6)

for a given g ∈ S ′
r in the range of R, we identify V = Se, W = Sr, and A = R. Note

that due to Theorem 3.1, R∗ maps Sr into Se and we have the situation mentioned in
Remark 2.2 and may choose a mollifier eγ(·, y) ∈ Se for every y ∈ R

n+1. Once having
a mollifier eγ at hand, the following extension lemma, whose proof also can be found
in [2], helps us to find a solution of the equation

R∗Ψγ(y) = eγ(·, y),(3.7)

which is our reconstruction kernel; see (2.5).
Lemma 3.2 (see [2, Extension Lemma 2.4 and Corollary 2.5]). There exists a

continuous linear mapping E : Se → Sr such that

R∗ E = idSe .(3.8)

For ρ ≥ ‖σ‖ the mapping E satisfies

F Ef(σ, ρ) = f̂(σ,
√

ρ2 − ‖σ‖2).(3.9)

If eγ(·, y) ∈ Se is a mollifier in the sense of Definition 2.1, then the reconstruction
kernel Ψγ(y) belonging to eγ is given by

Ψγ(y) = Eeγ(·, y).(3.10)

With the help of (3.8) we easily see that Ψγ(y) from (3.10) is a solution of (3.7).
From (3.5), it is clear that any continuous E that satisfies (3.9) will satisfy (3.8).

We will choose E so that for a mollifier eγ(·, y) in Se, Eeγ(·, y) is in Sr.
So far we know how to get the reconstruction kernel once we have chosen a

mollifier. Theorem 4.1 will provide general criteria that will allow us to construct
mollifiers, and with the help of Lemma 3.2 we know how to find a corresponding
solution of (3.7). But it would be very time-consuming if we had to solve (3.7) for all
reconstruction points y. To this end we prove an invariance property of R∗, Lemma 3.3,
which allows us to solve (3.7) only once and to generate all reconstruction kernels by
applying the invariance to that one solution.



REGULARIZATION IN DISTRIBUTION SPACES 1375

For a given M > 1, we denote

HM = HM (Rn+1) = {y = (y′, yn+1) ∈ R
n+1 : 1/M < |yn+1|},

HM,M = HM,M (Rn+1) = {y = (y′, yn+1) ∈ R
n+1 : 1/M < |yn+1| < M}.(3.11)

Furthermore, if U ⊂ R
n+1 is open, we define

Se(U) = {f ∈ Se(R
n+1) : supp f ⊂ U},

S ′
e(U) = {f ∈ S ′

e(R
n+1) : supp f ⊂ U},

E ′
e(U) = {f ∈ S ′

e(R
n+1) : supp f ⊂ U is compact}.

Note that, in general, S ′
e(U) is a proper subspace of the dual space of Se(U).

We define mappings Sy
e : Se → Se and Sy

r : Sr → Sr by

Sy
ef(x) =

{
|yn+1|−n−1 f

(
x′−y′

|yn+1| ,
xn+1

|yn+1|

)
, y ∈ HM (Rn+1),

0, y /∈ HM (Rn+1),
(3.12)

Sy
r g(z, r) =

{
|yn+1|−2n−1 g

(
z−y′

|yn+1| ,
r

|yn+1|

)
, y ∈ HM (Rn+1),

0, y /∈ HM (Rn+1).
(3.13)

Because Sy
e and Sy

r are compositions of dilations and translations, they are linear
and continuous mappings on Se and Sr, respectively. Moreover, both operators inter-
twine with the adjoint R∗. It is also clear that Sy

ef and Sy
r g can be discontinuous in y

for yn+1 = ±1/M .
Lemma 3.3. Let Sy

e : Se → Se and Sy
r : Sr → Sr be defined as in (3.12) and

(3.13), respectively. Then,

Sy
e R∗ = R∗ Sy

r .(3.14)

Proof. Let y ∈ HM (Rn+1). Using representation (3.4) together with the defini-
tions (3.12) and (3.13) gives

R∗Sy
r g(x

′, xn+1) = |yn+1|−2n−1

∫
Rn

g

(
z − y′

|yn+1|
, |yn+1|−1

√
‖z − x′‖2 + x2

n+1

)
dz

= |yn+1|−n−1

∫
Rn

g

(
z,
√

‖z − |yn+1|−1 (x′ − y′)‖2 + |yn+1|−2 x2
n+1

)
dz

= Sy
e R∗g(x′, xn+1)

for all g ∈ Sr. For y /∈ HM (Rn+1) assertion (3.14) follows immediately, since both
sides are equal to zero.

Lemma 3.3 tells us that under certain conditions we may restrict ourselves to
solving (3.7) only for one single y ∈ R

n+1.
Corollary 3.4. For each γ > 0 let ēγ ∈ Se(R

n+1) and eγ(·, y) ∈ Se be defined
by Sy

e :

eγ(x, y) = Sy
e ēγ(x).(3.15)

Assume eγ is a mollifier. Then, we get all corresponding reconstruction kernels by
solving

R∗Ψ̄γ = ēγ(3.16)
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and setting

Ψγ(y) = Ψγ(y; z, r) = Sy
r Ψ̄γ(z, r).(3.17)

If eγ is an (E ′
e(HM,M ),Se(HM,M ))-mollifier, then

Sγ Rf := 〈Rf,Ψγ〉S′
r×Sr

→ f

for f ∈ E ′
e(HM,M ). This means that

〈〈Rf,Ψγ〉S′
r×Sr , β〉E′

e(HM,M )×Se(HM,M ) → 〈f, β〉E′
e(HM,M )×Se(HM,M )

for all β ∈ Se(HM,M ).

We will construct a general class of ēγ in section 4 and show that the resulting eγ
satisfy the definition. We now prove the corollary.

Proof. Taking into account (3.17) and (3.14), statement (3.16) is a consequence
of

eγ(x, y) = Sy
e ēγ(x) = Sy

e R∗Ψ̄γ(x) = R∗ Sy
r Ψ̄γ(x) = R∗{Ψγ(y)}(x).

Considering (3.8) a solution of (3.16) is given by Ψ̄γ = Eēγ .

Remark 3.5. Putting

fγ(y) = 〈f,Sy
e ēγ〉S′

e×Se

it becomes clear from (3.12) that supp fγ ⊂ HM (Rn+1). Thus, using the invariance Sy
e

to generate mollifiers, we can only recover objects f ∈ S ′
e with support in HM (Rn+1).

But this is not a restriction in applications, e.g., in sonar or radar, since the support of
any object to be reconstructed is always a positive distance from the line yn+1 = 0. For
technical reasons, our mollifiers satisfy the convergence assumption (2.3) for bounded
|yn+1|, so we will reconstruct fγ only on HM or HM,M . This is not a serious prac-
tical restriction since M can be chosen arbitrarily large. Therefore, we will construct
(E ′

e(HM,M ),Se(HM,M ))-mollifiers.

To use the method of approximate inverse for inverting R, we

• choose a mollifier eγ fulfilling the conditions of Theorem 4.1 defined by Sy
e :

eγ(x, y) = Sy
e ēγ(x) and calculate Ψ̄γ = Eēγ ;

• compute the approximate inverse of R as

Sγg(y) = 〈g,Sy
r Ψ̄γ〉S′

r×Sr
,(3.18)

where g = Rf are the given data.

Considering (3.9), we have only an explicit representation for F Eēγ when ρ ≥ ‖σ‖.
We want to obtain Ψ̄γ rather than its Fourier transform because a discrete Fourier
transform would extend the data, which are given in applications only on a bounded
domain, periodically and could cause large artifacts. Furthermore even in the two-
dimensional case (n = 1) we would have to compute a three-dimensional Fourier
transform of the data. Therefore, we need an explicit representation of F Eēγ for all
ρ ≥ 0 and σ ∈ R

n. (Andersson uses an extension method from Stein [30] which is
fairly arbitrary and not explicit for calculations.) We will present an idea in section 4
that will circumvent these difficulties.
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4. Design of a mollifier for R. Due to Corollary 3.4 we let the mollifier eγ be
defined eγ(x, y) = Sy

e ēγ(x) as in (3.12).
Since we will need the Fourier transform of ēγ to compute the reconstruction

kernel (see (3.9)) it is appropriate to choose ēγ as a tensor product

ēγ(x) = e1
γ(x′) ⊗ e2

γ(xn+1),(4.1)

where e1
γ ∈ S(Rn), e2

γ ∈ S(R), e2
γ even. Defining eγ(x, y) as in (3.15), (4.1) it is

obvious that eγ(·, y) ∈ Se(R
n+1) for all y ∈ R

n+1.
In view of (3.9) and Theorem 4.1 below we want eγ and ēγ to have the following

properties:
1.

∫
Rn e1

γ(z) dz = 1 =
∫

R
e2
γ(t) dt.

2. Fe1
γ is easy to calculate.

3. Fe2
γ(
√
ξ) has a nice extension for ξ < 0.

By “nice” in 3, we mean that the extension is explicitly known since we do not
want to apply an extension lemma [30] like Andersson did it in his article [2]. More-
over we need an explicit expression for that extension to calculate the corresponding
reconstruction kernel.

Now we get more explicit with our choices for e1
γ and e2

γ . We define

e1
γ(x′) = γ−n e1(x′/γ) for e1(x′) ∈ S(Rn),

∫
Rn

e1(z) dz = 1.(4.2)

We have to be careful with respect to the choice of e2
γ . Let F ∈ Se(R) have mean

value 1. To guarantee the mollifier property, because of the dilation by yn+1 in Sy
e

(see (3.12) and (3.15)), we define

e2
γ(q) =

1

2 γ

{
F

(
q + 1

γ

)
+ F

(
q − 1

γ

)}
for F ∈ Se(R),

∫
R

F (t) dt = 1.(4.3)

We will show that property 3 is fulfilled when we define F as in (4.5) below.
The following key theorem asserts that these properties guarantee eγ is a mollifier.

The proof will be given in the appendix.
Theorem 4.1. Let M > 1 and let functions e1

γ and e2
γ be given by (4.2) and

(4.3). Then, eγ defined by (3.15) and (4.1) is an (E ′
e(HM,M ),Se(HM,M ))-mollifier.

We will now construct specific functions e1
γ and e2

γ that we will use in our algo-
rithm. We define

e1
γ(x′) = γ−ne1(x′/γ), e1(x′) = (2π)−n/2 exp(−‖x′‖2/2), x′ ∈ R

n,(4.4)

which obviously is a function in S(Rn) with mean value 1, since
∫

Rn e1
γ(x′) dx′ =

ê1
γ(0) = 1.

We have to be more careful in the choice of e2
γ . The desirable extension property 3

for e2
γ is fulfilled if there exists a function g ∈ S(R) satisfying

Fe2
γ(
√
ξ) = g(ξ2).(4.5)

The function

F (q) := 2F−1{exp(−|ξ|4)}(2 q)(4.6)

satisfies (4.5) with g(ξ) = exp(−|ξ|2). So, F is an even function in S(R) with mean
value equal to 1. We define e2

γ using (4.3) and the specific function (4.6).
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Remark 4.2. Since the inverse Fourier transform of exp(−|ξ|4) does not decrease
as rapidly as exp(−|ξ|2) near ξ = 0, we introduced the dilation factor 2 in (4.6) to
make the decay behavior the same in both variables (see also Figure 1).

Corollary 4.3. Let M > 1. The function eγ = e1
γ ⊗ e2

γ defined using (4.4) and
(4.3) with F defined by (4.6) satisfies the assumptions of Theorem 4.1 and therefore
is an (E ′

e(HM,M ),Se(HM,M ))-mollifier.
Proof. All we need to do is observe that our specific e1 and F satisfy

∫
Rn e1(z) dz =

1 =
∫

R
F (t) dt and that eγ is constructed according to Theorem 4.1.

Figure 1 displays ēγ in the case of n = 1, γ = 0.06. It has its peak in (0, 1).
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Fig. 1. Plot of eγ(x1, x2) in the two-dimensional case (n = 1) for γ = 0.06 (left picture). On
the right-hand side is the graph of e1γ (bottom) and e2γ (top). The width of the peak is about 0.5
units in each case (note the different scales), which is achieved by the dilation in (4.6).

5. Computation of the reconstruction kernel Ψ̄γ . Throughout this section
we assume ēγ to be given as in (4.1), (4.2), (4.3), (4.4), and (4.6) and eγ(x, y) =
Sy

e ēγ(x). Our aim is to compute Ψ̄γ = Eēγ .
From Lemma 3.2 we know that

FΨ̄γ(σ, ρ) = F Eēγ = Fēγ(σ,
√
ρ2 − ‖σ‖2) if ρ ≥ ‖σ‖,(5.1)

where ρ ≥ 0, σ ∈ R
n. Thus, we have to compute the Fourier transform of ēγ at first.

Lemma 5.1. We have that

Fēγ(σ, ρ) = ê1
γ(σ) ê2

γ(ρ) = cos(ρ) e−γ2 ‖σ‖2/2 e−γ4 ρ4/16,(5.2)

where σ ∈ R
n, ρ ∈ R.

Proof. The proof follows from a straightforward calculation using the definition
of ēγ .

So far by Lemma 5.1 we have the representation

FΨ̄γ(σ, ρ) = cos(
√

ρ2 − ‖σ‖2) e−γ2 ‖σ‖2/2 e−γ4 (ρ2−‖σ‖2)2/16) if ρ ≥ ‖σ‖.(5.3)

To get Ψ̄γ for all ρ ≥ 0 and σ ∈ R
n, we have to find an extension of cos

√
ξ for ξ < 0

that turns (5.3) into a function in Sr. The natural extension involves cosh
√
−ξ for

ξ < 0. As noted in section 3, we can extend Ψ̄γ arbitrarily, and for computational
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Fig. 2. The reconstruction kernel Ψ̄γ given as in (5.6) for γ = 0.06 and n = 1. The integrals
have been computed using numerical integration.

reasons, we will cut this function off away from ξ = 0. Let χ ∈ C∞(R) be zero on
(−∞,−1] and 1 on [0,∞) and let

G(ξ) =

{
cos

√
ξ, ξ ≥ 0,

χ(ξ) cosh(
√
|ξ|), ξ < 0.

(5.4)

The Fourier transform FΨ̄γ is given by

FΨ̄γ(σ, ρ) = G(ρ2 − ‖σ‖2) e−γ2 ‖σ‖2/2 e−γ4 (ρ2−‖σ‖2)2/16(5.5)

and we get Ψ̄γ by applying the inverse Fourier transform.
Lemma 5.2. Let ēγ be given as in (4.1), (4.2), (4.3), (4.4), and (4.6). Then, a

solution of R∗Ψ̄γ = ēγ is represented by

Ψ̄γ(z, r) = 2n (2π)−
3
2 n− 1

2

∫
R

n
+

∫ ∞

0

{
G(ρ2 − ‖σ‖2) e−γ2 ( ‖σ‖2

2 + γ2

16 (ρ2−‖σ‖2)2)

· ρ(n+1)/2 J(n−1)/2(ρ r) cos(〈σ, z〉)
}
dρ dσ.(5.6)

Here, R
n
+ = {x = (x1, . . . , xn)� ∈ R

n : xj ≥ 0}, Jν is the Bessel function of first kind
of order ν, and G is given as in (5.4).

Proof. The proof follows by a simple application of an inverse Fourier transform
of dimension 2n+ 1 to (5.5) in which one uses Lemma 5.1, spherical coordinates, and
the identity ∫

Sn

eı ρ r 〈ω,θ〉 dω = (2π)(n+1)/2 (ρ r)(1−n)/2 J(n−1)/2(ρ r),

which can be found, e.g., in [10].
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Figure 2 displays a picture of Ψ̄γ for γ = 0.06 and n = 1 corresponding to the
two-dimensional case. The integrals in (5.6) have been computed using numerical
integration, where the integrals were cut off when the absolute value of the integrand
was less then 10−12. The reconstruction kernel in Figure 2 belongs to the mollifier
shown in Figure 1 and has its absolute maximum point in (0, 1), just as the mollifier ēγ .

6. Implementation and numerical results. We now have all the ingredients
to implement the approximate inverse for the spherical Radon transform. We present
results for the two-dimensional case (n = 1). The reconstruction kernel Ψ̄γ (5.6)
belonging to the mollifier (4.1), (4.2), (4.3) has the representation

Ψ̄γ(z, r) =
2

(2π)2

{∫ ∞

0

∫ ∞

0

τ J0(
√
τ2 + σ2 r) cos τ e−γ2 (σ2

2 + γ2 τ4

16 ) cos(σ z) dτ dσ

(6.1)

+

∫ ∞

0

∫ σ

0

τ J0(
√
σ2 − τ2 r)χ(−τ2) cosh τ e−γ2 (σ2

2 + γ2 τ4

16 ) cos(σ z) dτ dσ

}
,

where we used the substitutions ρ =
√
τ2 + σ2 and ρ =

√
σ2 − τ2, respectively.

Throughout this section we suppose that f has compact support in HM,M (R2)
for a certain M > 1. The method of approximate inverse used to solve the problem
Rf = g for n = 1 has the form SγRf(y) = 〈Rf,Sy

r Ψ̄γ〉S′
r×Sr .

We now adjust the algorithm to practical situations where only finitely many data
on a bounded domain are available. Assume that equally spaced centers zk ∈ [λ,Λ],
λ < Λ, k = 0, . . . , P , and equally spaced radii rm ∈ [0, R], R > 0, m = 0, . . . , Q,
are given, so we have N = (P + 1) (Q + 1) spherical averages of f at hand. More
explicitly, instead of Rf itself we have only the vector φN Rf ∈ R

N as data, where
φN : C(R × [0,∞)) → R

N are the point evaluations

(φNv)k,m = v(zk, rm), 0 ≤ k ≤ P, 0 ≤ m ≤ Q.

Remark 6.1. The observation operator φN , which contains all information
about the measurement geometry, is well defined only if the function to be evalu-
ated is continuous. Since Rf ∈ S ′

r we have to postulate that Rf is a continuous, but
not necessarily integrable, function in order to apply φN properly. Thus, we assume
Rf ∈ C(R × [0,∞)) which is not a large restriction since R smooths of order n/2 in
Sobolev scales.

To recover f from φNRf we apply the trapezoidal sum corresponding to the nodes
{zk}, {rm} and obtain

Sγ,N φN Rf(y) = 〈φN Rf,QN φN Sy
r Ψ̄γ〉RN

=
2π

|y2|3
hz hr

P∑
k=0

Q∑
m=0

rm Ψ̄γ

(
zk − y1

|y2|
,
rm
|y2|

)
Rf(zk, rm)(6.2)

for y ∈ HM (R2), QN = hz hr IN,N (compare (2.8)).
Formula (6.2) was applied to get the reconstructions in Figures 3 and 4.
As mentioned in section 5 we compute Ψ̄γ by applying numerical integration to

(6.1) choosing convenient integration boundaries. Moreover we determine Ψ̄γ(z, r) on
the square [0, 15]2 on an equidistant mesh grid consisting of 128 × 128 grid points.
Since the kernel is rapidly decreasing, the absolute value of Ψ̄γ outside the square
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[0, 15]2 is rather small, so we can extend the kernel by 0 there. Using the symmetry
Ψ̄γ(z, r) = Ψ̄γ(−z, r) and linear interpolation we get Ψ̄γ(z, r) for every z ∈ R, r ≥ 0.

To check the performance of the above algorithm we implemented it to reconstruct
several objects. All reconstructions were computed for (y1, y2) ∈ [0, 7] × [1, 8] using
an equidistant mesh grid with 64 × 64 grid points. The objects are assumed to have
their support in H1(R2). The data are given on equally spaced points with λ = −36,
Λ = 36, P = 384, R = 50, and Q = 256. Note that in all pictures the y2-axis is the
horizontal one, whereas the y1-axis (the sonar sources, circle centers) is the vertical
one.

First, we recovered the characteristic function of a circle centered at (4, 4) with
radius 1 and density 2. Figure 3 shows the original circle as well as the approximate
inverse Sγ,NφN Rf . We used the reconstruction kernel (6.1) with γ = 0.06 which was
precomputed for (z, r) ∈ [0, 15]2 using 128 × 128 equally distributed grid points.
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Fig. 3. Reconstruction of the characteristic function of a circle (left) and original object func-
tion (right), γ = 0.06.
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Fig. 4. Reconstruction of two circles f1 and f2 (left) and original object function (right),
γ = 0.06.

Second, we applied the algorithm to the sum of the function in Figure 3 and the
characteristic function of a disk centered at (2, 3) and of radius 1. The reconstruction
as well as the original object can be seen in Figure 4; the parameters are the same as
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in Figure 3.
These tests show that the method of approximate inverse works fine, and the

reconstructions are comparable to those in [9]. Some blurring in the reconstructions
is probably caused by the numerical calculation of the reconstruction kernel and trun-
cation error. However, some ill-posedness is inherent in the problem.

Remark 6.2. Some of the fuzzy reconstruction boundaries in Figures 3 and 4
are intrinsic to the problem. As shown in [19, 24], the object boundaries that are most
difficult to reconstruct are those not tangent to circles in the data set. This means that
horizontal boundaries in Figures 3 and 4 will be intrinsically hardest to reconstruct
since the set of circle centers is the vertical axis. Since more-or-less vertical boundaries
are tangent to spheres in the data set, the microlocal analysis predicts they will be
easiest to reconstruct. This is analogous to limited angle X-ray tomography in which
some boundaries are “invisible” in the data [25].

7. Conclusions. In this paper we extended the method of approximate inverse,
a regularization scheme for operators between Hilbert spaces, to distribution spaces.
We applied the method to the inversion problem of the spherical Radon transform
which appears in sonar as well as in radar. This algorithm allows one to solve inverse
problems for linear operators which are not bounded mappings between Hilbert or
Banach spaces.

We presented a representation for a reconstruction kernel Ψ̄γ in arbitrary dimen-
sions (5.6). Unfortunately, in the three-dimensional case (n = 2) numerical integration
to get Ψ̄γ is too time consuming and we are working on other ways to get the recon-
struction kernel. In this case a modified inversion formula presented by Klein [13]
might be useful. This inversion formula could also be helpful to obtain an analytic
expression for the reconstruction kernel Ψ̄γ , which would also increase the accuracy of
the reconstructed solution. This and stability and error analysis (as for Hilbert space
in [27]) will be part of future research.

Appendix A. Proof of Theorem 4.1. Let M > 1. We recall the general
construction of eγ given in section 4. Let eγ(x, y) = Sy

eeγ(x), where

ēγ(x) = e1
γ(x′) ⊗ e2

γ(xn+1),(A.1)

e1
γ(x′) = γ−ne1(x′/γ),

∫
Rn

e1(x′) dx′ = 1, e1 ∈ S(Rn),(A.2)

e2
γ(q) =

1

2 γ

{
F

(
q + 1

γ

)
+ F

(
q − 1

γ

)}
for F ∈ Se(R),

∫
R

F (t) dt = 1.(A.3)

We will use several steps to show that eγ is an (E ′
e(HM,M ),Se(HM,M ))-mollifier.

First, we will prove (2.2) using Lemma A.1. Then, we will prove a distributional
Fubini’s theorem, Lemma A.2, and finally, we will prove the convergence result (2.3)
which concludes the proof of Theorem 4.1.

Lemma A.1. Let γ > 0 be fixed, eγ be defined by (A.1)–(A.3), and ϕ ∈ S ′
e(R

n+1).
Then, the function 〈ϕ, eγ(·, y)〉S′

e×Se
is a continuous function of polynomial growth for

y ∈ HM and is 0 for y /∈ HM . Therefore 〈ϕ, eγ(·, y)〉S′
e(R

n+1)×Se(Rn+1) ∈ S ′
e(R

n+1).
Proof. First, using the definition of eγ , one proves the map y �→ eγ(·, y) is a

continuous map from HM to Se(R
n+1). Therefore, 〈ϕ, eγ(·, y)〉S′

e×Se is continuous for
y ∈ HM and is 0 if not.

We simplify the problem by reducing the calculation to integrals of functions.
By [6] there exists a multi-index α ∈ N

n+1
0 and a continuous function Pϕ of polynomial
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growth such that

ϕ = DαPϕ,(A.4)

where α = (α′, αn+1) and Dα = ∂α1
x1

· · · ∂αn+1
xn+1 .

For y ∈ HM , we obtain

ϕγ(y) := 〈ϕ, eγ(·, y)〉S′
e×Se

= (−1)|α|
∫

Rn+1

Pϕ(x)Dα
x eγ(x, y) dx

(A.5)

=
1

2(−γ |yn+1|)|α|
∫

Rn

∫
R

[
Pϕ(γ |yn+1| z′ + y′, γ |yn+1| zn+1 + |yn+1|)

+ Pϕ(γ |yn+1| z′ + y′, γ |yn+1| zn+1 − |yn+1|)
]
Dα′

e1(z′)Dαn+1F (zn+1) dzn+1 dz
′,

where we used the substitutions z′ = (x′ − y′)/(γ |yn+1|) and zn+1 = (xn+1/|yn+1| ±
1)/γ, as well as the symmetry of F . Since Pϕ is polynomially increasing, there exists
a constant Cϕ > 0 and a κ > 0 such that

|Pϕ(x)| ≤ Cϕ (1 + ‖x‖2)κ as ‖x‖ → ∞, x ∈ R
n+1.(A.6)

Using (A.6) and some simple estimates, we show∣∣∣Pϕ

(
γ |yn+1| z′ + y′, γ |yn+1| zn+1 ± |yn+1|

)∣∣∣ ≤ Cϕ 2κ (1 + γ2 |yn+1|2 ‖z‖2)κ (1 + ‖y‖2)κ.

This allows us to estimate (A.5) as

|ϕγ(y)| ≤ Cϕ 2κ qγ (γ |yn+1|)−|α| (1 + ‖y‖2)κ, y ∈ HM ,

with qγ :=
∫

Rn

∫
R
(1+γ2 |yn+1|2 ‖z‖2)κ Dα′

e1(z′)Dαn+1F (zn+1) dzn+1 dz
′ < ∞, which

finishes the proof.
Our next task is to prove a distributional Fubini’s theorem that will allow us to

examine the pairing 〈eγ(x, ·), β〉 to show the convergence result (2.3) in Definition 2.1.
Lemma A.2 (distributional Fubini’s theorem). Let γ > 0 be fixed and eγ be

defined by (A.1)–(A.3). Further assume that ϕ ∈ S ′
e(R

n+1) and β ∈ Se(HM ). Then,

〈〈ϕ, eγ(·, y)〉S′
e(R

n+1)×Se(Rn+1), β〉S′
e(R

n+1)×Se(HM )(A.7)

= 〈ϕ, 〈eγ(x, ·), β〉S′
e(R

n+1)×Se(HM )〉S′
e(R

n+1)×Se(Rn+1).

Furthermore,

βγ(x) := 〈eγ(x, ·), β〉S′
e(R

n+1)×Se(HM ) ∈ Se(R
n+1) .(A.8)

Note that here, βγ is a function of x, and in section 2, fγ is a function of y.
Proof. We reduce this to a Fubini theorem for functions. Since ϕ = DαPϕ for a

function Pϕ with polynomial growth by (A.4), we can again use (A.5) to write

〈ϕγ , β〉S′
e(R

n+1)×Se(HM ) =

∫
HM

∫
Rn

∫
R

Iγϕ(y′, yn+1, x
′, xn+1) dxn+1 dx

′ dyn+1 dy
′,

(A.9)
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where

Iγϕ(y′, yn+1, x
′, xn+1) :=

(−1)|α|

2
(γ |yn+1|)−n−1−|α| β(y′, yn+1)Pϕ(x′, xn+1)

· (Dα′
e1)

(
x′ − y′

γ |yn+1|

){
(Dαn+1F )

(
xn+1 − |yn+1|

γ |yn+1|

)
+ (Dαn+1F )

(
xn+1 + |yn+1|

γ |yn+1|

)}
.

Using (A.6), y ∈ HM , the fact that F , β, and e1 are in Se, and some basic inequalities
(e.g., (1+‖a−b‖2)−q ≤ 2q (1+‖b‖2)q (1+‖a‖2)−q, a, b ∈ R

n, q ∈ N), we may estimate

|Iγϕ(y′, yn+1, x
′, xn+1)| ≤ (Cϕ/2) (1 + ‖x‖2)κ (γ/M)−n−1−|α| |β(y′, yn+1)|

·
(

1 +
‖x′ − y′‖2

γ2 y2
n+1

)−q1
{(

1 +
(xn+1 − |yn+1|)2

γ2 y2
n+1

)−q2

+

(
1 +

(xn+1 + |yn+1|)2
γ2 y2

n+1

)−q2
}

≤ Cϕ

2

(1 + ‖x‖2)κ

(1 + ‖y‖2)q3

( γ

M

)−n−1−|α| (1 + ‖y′‖2)q1

(1 + ‖x′‖2)q1
(1 + |yn+1|2)q2
(1 + |xn+1|2)q2

[2(1 + γ2 y2
n+1)]

q1+q2

for arbitrary q1, q2, q3 ∈ N.
We see for sufficiently large q1, q2, q3 that the integrand in (A.9) is bounded by

an integrable function in (x, y) ∈ R
n+1 ×HM .

This allows us to switch the order of integration in (A.9). Since the integral in
this switched version is smooth with uniformly integrable derivatives in y ∈ HM for
x in any compact set, we can pull the Dα out of the inner integral. Finally, we use
the definition of derivative on S ′

e to prove (A.7).
To show (A.8), we let α ∈ N

n+1
0 be an arbitrary multi-index. We will prove that

Dαβγ decreases rapidly. We bring the Dα inside the integral for βγ and use estimates
as above, and we find a constant c̃γ > 0 such that

|Dαβγ(y)| ≤ c̃γ (1 + ‖y′‖2)−q1 (1 + y2
n+1)

−q2 , (y′, yn+1) ∈ R
n+1,

for arbitrary numbers q1, q2 ∈ N since β ∈ Se(HM ) and γ is fixed. Now, using similar
arguments as for the bound on |Iγϕ|, we prove assertion (A.8).

The final key is the following important convergence result.
Lemma A.3. Let eγ be defined by (A.1)–(A.3). Let β ∈ Se(HM,M ) and α ∈ N

n+1
0

be a multi-index. Assume that βγ is defined by (A.8). Then, Dαβγ → Dαβ(x)
pointwise in HM,M , and Dαβγ is uniformly bounded in (x, γ) ∈ HM,M × (0, 1).

Proof. We first use the symmetry of F to write

βγ(x) =

∫
HM,M

1

(γ |yn+1|)n+1
e1

(
x′ − y′

γ |yn+1|

)
F

((
xn+1

yn+1
− 1

)/
γ

)
β(y) dyn+1 dy

′.

(A.10)

We assume (x, y) ∈ HM,M ×HM,M and then we use the change of variables

z′ = (x′ − y′)/(|yn+1|γ), zn+1 =

(
xn+1

yn+1
− 1

)/
γ,(A.11)

and we have the following simple but important estimate:

1

M2
<

1

M |xn+1|
<

1

|γzn+1 + 1| <
M

|xn+1|
< M2.(A.12)
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Then, the integral in (A.10) becomes

βγ(x) =

∫
Rn

∫
1/|γzn+1+1|<M2

e1(z′)F (zn+1)(A.13)

· β
(
x′ − γ|xn+1|

|γzn+1 + 1|z
′,

xn+1

γzn+1 + 1

)
1

|γzn+1 + 1|dz
′dzn+1,

where the limits of integration in (A.13) are determined because 1/M < |yn+1| < M
and suppβ ⊂ R

n × [1/M,M ].
In order to subtract β(x) within the integral (A.13), we define an auxiliary func-

tion that simplifies the calculation,

bγ(x) = β(x)

∫
1/|γzn+1+1|<M2

e1(z′)F (zn+1)
1

|γzn+1 + 1| dzn+1.

We must calculate Dα[βγ − bγ ] and show this difference goes to zero as γ → 0. To do
this, we take the derivative inside the integral:

Dα[βγ(x) − bγ(x)] =

∫
Rn

∫
1/|γzn+1+1|<M2

e1(z′)F (zn+1)

·Dα
x

{
β

(
x′ − γ|xn+1|

|γzn+1 + 1|z
′,

xn+1

γzn+1 + 1

)
− β(x)

}
1

|γzn+1 + 1| dz
′ dzn+1.(A.14)

To show that (A.14) converges to zero, we must do two things:
1. We need to show for each x ∈ HM,M that the integrand in (A.14) is bounded

by an integrable function uniformly in γ ∈ (0, 1).
2. We need to show Dαβγ is bounded by an integrable function, uniformly in

γ ∈ (0, 1).
To show 1, we need to examine the derived integrand. The Dα′

x′ terms are evalu-
ated on β in both terms of (A.14) and they do not cause a problem, so we will evaluate
them first. This gives an expression

Dα
x

{
β

(
x′ − γ |xn+1|

|γ zn+1 + 1| z
′,

xn+1

γ zn+1 + 1

)
− β(x)

}

= Dαn+1
xn+1

(Dα′

x′ β)

(
x′ − γ |xn+1|

|γ zn+1 + 1| z
′,

xn+1

γzn+1 + 1

)
−Dα

xβ(x).(A.15)

However, because xn+1 appears in both coordinates of the first β in (A.15), some
of the derivatives in D

αn+1
xn+1 fall on the first coordinate. We will let δ′ = (δ1, . . . , δn)

denote a multi-index in N
n
0 . An explicit calculation shows that the integrand in (A.14)

can be written for xn+1 > 1/M > 0 as a sum of terms in which some derivatives in
xn+1 fall on the first coordinates of β and then the term in which all derivatives fall
on the last coordinate, the integrand in (A.14) becomes

e1(z′)F (zn+1)

|γ zn+1 + 1|

[ ∑
0<|δ′|≤αn+1

(
γ|δ′| (−z)δ

′

|γ zn+1 + 1||δ′| (γ zn+1 + 1)αn+1−|δ′|

(A.16)

·
(
∂αn+1−|δ′|
xn+1

Dδ′+α′

x′ β
)(

x′ − γ |xn+1|
|γ zn+1 + 1|z

′,
xn+1

γ zn+1 + 1

))

+

{
(γ zn+1 + 1)−αn+1 (Dαβ)

(
x′ − γ |xn+1|

|γ zn+1 + 1|z
′,

xn+1

γ zn+1 + 1

)
−Dαβ(x)

}]
.
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A similar formula is obtained for xn+1 < −1/M < 0.

Because 1/|γzn+1 + 1| ≤ M2, it can be seen from (A.16) that the integrand of
(A.14) can be bounded by an integrable function uniformly in γ ∈ (0, 1). Hence, an
application of Lebesgue’s dominated convergence theorem shows Dα(βγ − bγ) → 0
pointwise for x ∈ HM,M . This is valid for two reasons: the sum in (A.16) is a factor
of γ times a bounded function, and the difference in braces goes to zero as γ → 0.
Since (bγ − β) → 0 in Se(HM,M ) we thus have Dα(βγ − β) → 0 pointwise in HM,M .

A similar boundedness argument shows that Dαβγ is bounded by an integrable
function uniformly in γ ∈ (0, 1).

At last, we finish the proof of Theorem 4.1. Recall that in the statement of
this theorem, ϕ has compact support in HM,M and ϕ = DαPϕ for a function Pϕ

of polynomial growth (A.4). Thus, there are compactly supported functions ψ1(x
′)

and ψ2(xn+1) such that ψ2 is one on [−M,−1/M ] ∪ [1/M,M ] and supported in
[−2M,−1/2M ] ∪ [1/2M, 2M ] and ψ(x) = ψ1(x

′)ψ2(xn+1) is one on a neighborhood
of suppϕ. Then, ϕ = ψDαPϕ.

By Lemma A.2,

〈ϕγ , β〉S′
e(R

n+1)×Se(HM,M ) = 〈ϕ, βγ〉S′
e(HM,M )×Se(Rn+1)

= (−1)|α|
∫
HM,M

Pϕ(x)Dα
{
ψ(x)βγ(x)

}
dx.(A.17)

By the product rule for derivatives and the convergence result Lemma A.3, we
see that the derivative in (A.17) converges pointwise on any compact set in x, and
it is uniformly bounded. Therefore, we can use Lebesgue’s dominated convergence
theorem again to finish the proof of Theorem 4.1.
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