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Abstract

A recently launched BMBF-funded German R&D on
mine sensor technologies for humanitarian demining is
focussed, in its first phase, on sounding of the potential of
mathematical methodology of end-of-pipe data analysis of
conventional metal detectors, with the aim of significant
reduction of false alarm rates. Two R&D lines, each of
them complemented by forward modelling of the metal
detection process, will be followed in parallel: (1)
advanced signal analysis, employing modern tools (e.g.
neural networks, wavelets) for features extraction and
classification, and (2) local EMI imaging of 3D
subsurface patterns, employing tomographic methods,
with numerical solution of ill-posed inverse problems and
their regularization by exhaustion of a-priori knowledge
(e.g. signatures of mines and/or soils). The co-ordinated,
interdisciplinary approach is sketched, with a focus on the
3D imaging line.

1. Introduction

In humanitarian demining, the classical metal detector
(MD) is still a working horse in post-conflict search for
buried mines [1]. The operational principle of the MD is
electromagnetic induction (EMI): Scanning above the
sensed subsurface volumes, the MD generates time-
dependent magnetic fields and senses anomalies in the
electromagnetic response from the sensed volume. The
time-dependent primary magnetic fields induce eddy
currents in metallic objects, and the eddy currents
generate secondary magnetic fields. Usually, the primary
magnetic field is generated by one coil, and the secondary
magnetic field is detected by another coil. MD can differ
very much in their coil designs. The information content
of the detected signal S(t) depends on the operational
mode, that is, on the primary signal, which could be a
pulse-like or harmonic. In the time-domain mode (pulse
mode), the decline of S(t) is of primary interest. In the

frequency mode, the amplitude and phase of S(t) are of
primary interest..

The MD is extremely sensitive to even tiny metallic
objects but, due to lack of differentiation capability, the
MD suffers from high false-alarm rates caused by
ubiquitous clutter./debris, as well as from the potentially
strong dependence of its performance on the spatially
often very heterogeneous electromagnetic properties (e.g.
magnetic susceptibility) of the soil. There are different
approaches of attacking such problems:

(a) Combi-detection: Various R&D projects (e.g. [2])
are focused on combinations of the MD with at least one
complementary sensor that contributes near-orthogonal
information. This could be either another anomaly sensor
(e.g. ground penetrating radar) or a confirmation sensor
which senses constituents of explosives (e.g. artificial
nose).

(b) Signal analysis and pattern recognition: Use of
general tools (e.g. machine learning, neural networks,
wavelets) and specific EMI-related approaches (e.g. for
time-domain EMI sensors, EMI spectroscopy with
wideband frequency-domain [3]-[5]), for extraction and
classification of mine-like target features and/or soil
properties.

(c) 3D local imaging: EMI is used for imaging of
subsurface sensing of electrical conductivity patterns, for
example in exploration geophysics (e.g. [6],[7]) and non-
destructive testing (e.g. [8]). Primarily designed for other
spatial scales, subsurface imaging methodologies from
these disciplines are potentially transferable to scales
relevant in near-field mine detection.

The approaches (b) and (c) are followed parallely in the
recently launched first phase of a new R&D program,
funded by the German Federal Ministry of Education and
Research (BMBF), on detector technological aspects of
humanitarian demining. The approach (a), is postponed to
a later R&D program phase, which is currently in
conceptual planning, with advice from external experts.



2. 3D local imaging

With suitable operational scan procedures, some
additional hardware (high-resolution monitoring of MD
position and orientation; portable computation and
visualization capacity) and suitable numerical algorithms,
local EMI 3D imaging with a MD should be possible.

When the MD, operated in its normal mode, signals an
anomaly, the operator could start a local EMI scan mode:
automatic sampling (in small time intervals) of the
momentary values of MD position, the MD orientation
and the received secondary signal(s). This mode activated,
the operator could perform a local MD scan in an area
around the detected anomaly, varying not only the spatial
position r∈ℜ 3 of the MD but also its spatial orientation
ΩΩΩΩ∈ℜ 3 and other MD operational parameters (e.g. source
frequency), contained in a parameter vector p∈ℜ p. The
EMI scan procedure will yield the following data for 3D
local imaging: m signals si(t) for configurations ci =
(ri,ΩΩΩΩi,pi); i = 1,...,m.

Assuming a suitable operational procedure of the local
EMI scan mode, that is, a suitable pattern of configuration
point set {c1,...,cm} within a finite volume of ℜ p+6, taking
into account the anisotropy of the primary magnetic field
(usually a magnetic dipole), and considering the good
performance record of CT in various applications (e.g.
medicine), the above-described goal of subsurface 3D
imaging should be achievable.

The following step approach appears tempting, at first
glance: (1) Choice of a pattern of local subsurface
conductivities (2) With this pattern, simulation
(incorporating knowledge on the MD model of interest) of
the MD measurement process, for configurations c1,...,cm,
yielding signals s1(t),...,sm(t). (3) Comparison of predicted
and measured signals. (4) Variation of the pattern of
subsurface conductivities, aiming at a better matching of
virtual and real signals (5) Restart with step 1 and
iteration of the procedure. With this procedure, search of
the pattern that gives the best match (e.g. least squares or
maximum likelihood).

It is unlikely that such kind of brute-force approach will
work in real-time (which is operationally mandatory). Fast
and efficient alternatives are needed here. For this sake,
mathematical expertise (e.g. from computer tomography)
is involved in the program.

Performance parameters, such as computational speed,
attainable spatial resolution and reliability, remain to be
seen. Should the attainable reliability and spatial
resolution turn out insufficient for mine detection it might
suffice for unexploded ordnance (UXO). Interim results
from the planned mathematical analyses, particularly from
forward modelling, will upgrade the understanding of
MD measuring processes and thus can give useful hints
for fine-tuning of MD hardware (e.g. coil design).

3. Mathematical treatment

Major challenges of local EMI imaging with a MD are
the forward modelling of measurement processes and the
solution of inverse problems. Particularly useful in this
context could be mathematical methods from exploration
geophysics and from medical computer tomography.
Precise identification of the relevant states of the art in
relevant methodologies will be a priority task for the start
phase of the program; the selected references given below
are just for substantiating the expectation that the EMI 3D
local imaging approach should be feasible.

3.1. Maxwell’s equations

The main problem of forward modelling of the EMI
measurement process is the complex dynamics of the
interaction of several fields (each depending on both
position r and time t): electric field intensity E, magnetic
field intensity H; magnetic flux density B; electric flux
density D; electric current density j and electric charge
density ρ.

The macroscopic phenomena of classical electro-
dynamics are described (up to the Lorentz force exerted
by B on a moving charged particle) by Maxwell’s
equations. The related theory is reproduced below, for
better illustration of the problem, from standard textbooks
(e.g. [9]) on classical electrodynamics. In their differential
form, Maxwell’s equations read

curl E = -∂B/∂t (1)
curl H = j + ∂D/∂t (2)

div B = 0 (3)
div D = ρ (4)

with partial time derivative ∂/∂t and vector differential
operators curl and div which act on the space co-
ordinates.

For a vector field F, div F gives its divergence (source
density), curl F gives its rotation (vortex density). One
has div F = ∇∇∇∇⋅ F and curl F = ∇∇∇∇× F, formally scalar and
vector products with the nabla operator∇∇∇∇  which contains
partial derivatives with respect to the space co-ordinates.
The explicit definition of ∇∇∇∇  depends on the type of co-
ordinate system (e.g. cartesian, spherical, cylindrical); e.g.
[9]. Two central integral laws of vector differential
calculus,

�∂V F⋅⋅⋅⋅da= �V div Fdv   (Gauß)
�∂A F⋅⋅⋅⋅ds = �A curl F⋅⋅⋅⋅da    (Stokes)



which hold for arbitrary surface A (with closed border
line ∂A) and for arbitrary volume V (with closed border
surface ∂V), respectively, link the differential form of
Maxwell’s equations to their integral form

�∂A E⋅⋅⋅⋅ds= -d/dt �A B⋅⋅⋅⋅da (5)
�∂A H⋅⋅⋅⋅ds = I+ d/dt �A D⋅⋅⋅⋅da (6)

�∂V  B⋅⋅⋅⋅da = 0 (7)
�∂V D⋅⋅⋅⋅da  = Q (8)

with electric charge Q = �V ρdv and current I = �A  j⋅⋅⋅⋅da.
Both forms of Maxwell’s equations, (1)-(4) and (5)-(8),
are equivalent. It depends on the actual problem which of
them is more convenient for forward modelling.

As must be, Maxwell’s equations imply the continuity
equation for electric charge which reads (in case of no
charge sources or sinks)

div j + ∂ρ/∂t = 0

At a boundary surface A, Maxwell’s equations imply
the following boundary conditions:

n×δδδδE = 0
n×δδδδH = jA

n⋅⋅⋅⋅δδδδB = 0
n⋅⋅⋅⋅δδδδD = ρA

where  ρA and jA are the surface charge and flux
densities, respectively, δδδδF denotes the change of vector
field F when passing through surface A, and n is the
normal unit vector on surface A.

Maxwell’s equations are complemented by material
equations

B = µµ0H = µ0H + M (9)
D = εε0E = ε0E + P (10)

j = σE (11)

with universal electromagnetic constants ε0 and µ0. The
material parameters ε (electric permittivity), µ (magnetic
permeability) or σ (electric conductivity) may depend on r
and t.

Additional material equations are P = χeE, with electric
susceptibility χe, and M = χmH, with magnetic
susceptibility χm (the latter relation holds for
paramagnetic and diamagnetic materials only; with
ferromagnetic materials, things are more complex). In
case of isotropy, the material parameters are scalars, in
case of anisotropy (e.g. crystals, permanent
magnetization) they are tensors.

The solution of Maxwell’s equations can be facilitated
by the introduction of time-dependent potentials, the

scalar potential Φ and the vector potential A, with

E = grad φ – ∂A/∂t
B = curl A

where grad denotes the gradient. A and Φ are defined
up to a gauge transformation. The Coulomb (or
transversal, or radiation) gauge yields div A = 0. The
Lorentz gauge yields div A + εµ∂Φ/∂t = 0. With the latter,
one ends up with the inhomogeneous wave equations

(∇ 2 - εµ∂2/∂t2)φ = -ρ
(∇ 2 -εµ∂2/∂t2)A = -j

where Laplace operator ∇ 2, formally a scalar product of
operator ∇∇∇∇  with itself, contains second order partial
derivatives with respect to the spatial co-ordinates.

Powerful tool for solution of wave equations of the
form and the like are Green’s functions. A Green function
to the operator (∇ 2 + εµ∂2/∂t2) satisfies, in a given region
of ℜ 3,

(∇ 2 - εµ∂2/∂t2)G(r,t;r′,t′) = δ(r-r′)δ(t-t′)

with the Dirac delta distribution δ, and fulfills certain
conditions on the boundaries of this region. Such
conditions can be posed directly on the values of G
(Dirichlet type) or on the values of the normal derivative
∂G/∂n (Neumann type) on the boundary; the Dirichlet–to–
Neumann map relates the solution on the boundary to its
normal derivative on the boundary. With Green’s
functions, solutions to the wave equations

(∇ 2 - εµ∂2/∂t2)Ψ(r,t) = f(r,t)

are usually obtained in the form of convolution
integrals, with kernel function G. In infinite space and
with no boundary conditions, the solution is of the form

Ψ(r,t) = �G(r,t;r′,t′)f(r′,t′)dv′dt′

1.2. Forward modelling

Forward modelling is necessary for relating the
detected signal s(t) to the MD generated source field,
which depends on the above-defined measurement
configuration c = (r,ΩΩΩΩ,p). The source field generated by
the MD must be known as an input (for preliminary
purposes, particularly for tests and demonstrations of
computation performance in the early project phases, the
well-known magnetic field generated by a current in a
circular planar coil may be assumed).



Forward modelling by solution of Maxwell’s equations
(or of derivates of them), for given start an boundary
conditions, can be a difficult task. For non-simplistic,
realistic measurement geometries, analytical solution in
closed form will not be possible; numerical treatment will
become necessary.

The transfer of Maxwell equations (in their differential
of integral form) into algebraic forms requires some kind
of discretization (e.g. finite differences, finite elements,
finite volumes) on a suitable, not necessarily regular
mesh. There is some literature (e.g. [10]-[13]) on this
subject (also on discretizations that conserve, as much as
possible, the underlying physics). Special expertise (e.g.
[14]) on consistent discretization of Maxwell’s equations
(in their integral form, on a dual grid, using a finite
integration technique) is considered for contribution to the
program.

Forward modelling of the MD measurement process
gains quantitative understanding of the physics behind it.
Such understanding will help coping with a serious
problem: the heterogeneity of the electromagnetic
properties of soils and their influence on MD performance
(e.g.[15]). The potential benefits of forward modelling are
not restricted to EMI 3D local imaging but will also
extend to signal analysis.

1.3. Inverse problems

Reconstruction of 3D subsurface patterns of (primarily)
electric conductivity, on the empirical basis of data set S
(see above) and on the theoretical basis of forward
models, constitutes an inverse problem (e.g.[16]). Inverse
problems are also part of computer tomography (CT) for
medical diagnostic imaging (e.g. [17]).

Inverse problems are often ill-posed in the sense that
small errors in the data may cause very large errors in the
reconstructed solutions. A potential mitigation tool is
regularization (e.g. [18]), that is, stabilization of the
solution by explicit incorporation of additional a-priori
information into the approach. A potentially useful type of
a-priori information is signature (of mines, of soils); this
links EMI 3D local imaging and MD signal analysis.

A major problem is that inverse problems, particularly
those in the EMI imaging context, tend to be highly non-
linear, with the associated problems of non-uniqueness of
solution, not to speak of the impact on computation time.

1.4. Inverse scattering

There are various approaches to the problems described
above (e.g. [19]-[23]). There is some expertise in Gemany
on certain approaches (e.g.[23]-[30]) which are well tested
for the scalar Helmholtz equation (∇ 2 +k2)Ψ  = f , with k =

ω/c (which results when the search for solutions of the
scalar wave equation (∇ 2 - εµ∂2/∂t2)Ψ  = f   is restricted to
standing wave harmonics with angular frequency ω). Due
to their potential, these approaches (which differ in the
way the data errors are treated and in the information they
provide) are considered for adaptation to the inverse
problem of Maxwell’s equations and are sketched below.

One approach, employing the linear sampling method
(e.g. [24]]) for the Helmholtz equation and extended (e.g.
25]) to the inverse problem for the potential equation and
to electric impedance tomography, is based on a
factorization of the Dirichlet–to–Neumann map, relating
the solution on the boundary to its normal derivative. The
ranges of different operators are characterized and shown
to be the same for suitably chosen operators. The original
nonlinear problem described by the Dirichlet–to–
Neumann map is thus reduced to the study of the range of
a linear operator whose singular value decomposition can
be computed for homogeneous background. The method
works as follows. For each point z ∈  ℜ 3 the boundary
values of a dipole potential hz is determined. The point z is
inside the domain D of the metallic object if and only if it
lies in the range of the above mentioned operator; i.e., the
Picard criterion for hz is fulfilled, which means a certain
series converges. This series is computed via the singular
value decomposition and convergence is checked with the
help of the decay of the computed expansion coefficients.
The data errors enter these coefficients. Hence for each
point in the examined region the information whether this
point belongs to a metallic body or not is provided, hence
an image in produced. From its shape one can conclude
whether a mine is in this examined region or not.

A second approach (e.g. [23],[26]) is based on results
on the dependence of  the measured field from the
boundary of the searched–for object [23]. The nonlinear
problem is solved by variants of Newton’s method; i.e.,
for a given initial guess the problem is linearized and
corrections are computed. With a priori assumptions the
number of iterations can be kept small. The regularization
of the data errors is achieved by choosing a suitable mesh
size which must no be too small. In that way the boundary
of the metallic object is determined. The method is well
established for the Helmholtz equation and has the
potential to be extended to the problem under
consideration

A third approach (e.g. [27]},[28]) is based on the
separation of the ill–posed nonlinear problem into a linear
ill–posed problem and a well–posed nonlinear problem
(e.g. [28]). By way of example, this approach is sketched
here in more detail. The product Ψ of the searched for
object function f and the field u is determined here as the
solution of the integral formulation of Maxwell’s
equations. In the scalar case of the Helmholtz equation
this reads as



us(α,x) = �G(k,x-y)Ψ(α,y)dy (12)

with Ψ(α,y) = u(α,y)f(y). This solution step is linear, it can
be solved by the method of approximate inverse [29],
where a reconstruction kernel is precomputed
independently of the data. The method is of filtered back-
projection type like the fast methods in x-ray CT. In this
step well established methods for noise reduction are
applied by filtering the data.

The drawback is that for each measurement for varying
parameter α the linear problem has a large null space. (It
is to be studied if these reconstructions are sufficient to be
the input of signal analysis, particularly for classification
algorithms like support vector machines.)

For the imaging the null space can be explicitly
characterized, and this information enters in a nonlinear
way into the second step of the reconstruction method.
Thereby the influence of so–called ghost solutions can be
reduced sufficiently. This more expansive step is only
necessary if the first reconstructions indicate some
metallic parts scattered in  the region under consideration.
This can be done in an adaptive way. Images of the
ground are thus provided, which have to be analyzed
accordingly. The method is shown to work for the
Helmholtz equation; first results for the Maxwell equation
are available.

2. Integrated approach

The above-described R&D problem, with its many
facets, requires a co-ordinated, approach which integrates
expertise from various scientific disciplines, such as
computational electrodynamics, numerical mathematics,
computer tomography, signal analysis, applied
informatics, exploration geophysics and soil science.
Advice from MD manufacturers and MD users is also
mandatory. This will be implemented in the German R&D
program. As described above there are two main fields of
research, which are followed in parallel: EMI 3D imaging
and signal analysis. Forward modeling of the MD
measurement process is fundamental for EMI 3D imaging
but also useful for signal analysis.

The aim of the forward modeling is to provide
computational simulations of the MD measurement
process and thus to promote the quantitative
understanding of the physics behind. Realistic modelling
must be capable of mapping the complex influence of soil
properties on MD performance and thus needs the
relevant input data from MD technology and from soil
geophysics.

In the early phases of the program, the signal analysis
R&D line aims at the discrimination of different types of

objects, on the basis of MD raw data. Results of this
discrimination may provide useful a-priori information for
the regularization of inverse problems in 3D imaging. In
the later phases of the project signal analysis methods can
be applied to 3D imaging data provided by solutions of
inverse problems.

The integration of these activities goes into the
direction of the long-propagated (e.g. [29]) unification of
subsurface sensing and imaging systems. In order to
ensure a high efficiency of this inter-disciplinary research
project a co-ordinated approach is required. A framework
is set up which supports and encourages the collaboration
between the main areas of research.

In order to achieve a high transparency for all members
of the project and to monitor the progress the research will
be accompanied by regular assessments of attainable
performance (e.g. reliability, computational speed, spatial
resolution). Besides the internal mutual data supply (e.g.
simulations of the MD measurement process,
experimental measurement) there is an additional need of
experimental data acquired under realistic conditions.

This demands for co-ordinated co-operation of the
involved scientists with MD manufacturers and MD users
(deminers). The developed methods will be tested, under
realistic conditions, in close co-operation with the
International Test and Evaluation Program (ITEP).

The term of the first program phase will be three years.
Priority task of the start phase of the project is a precise
identification of the states of the art in the relevant
methodologies. During the first one to two years, the
feasibility of the new approaches and their interaction
potential will regularly be checked, following a staggered
time schedule. In the remaining time, the main focus will
be on the implementation of the results.

It remains to be seen if the attainable resolution and
reliability of the approaches to 3D local imaging will be
sufficient for implementation in practical MD operations.
Whatever will come out, it is expected that many interim
results and their contribution to a better understanding of
the physics of MD based sensing will be useful in future
R&D programs on mine detection technology for
humanitarian demining.
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