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Depth-resolved residual stress evaluation from
X-ray diffraction measurement data using the
approximate inverse method

The paper deals with the depth determination of residual
stress states from diffraction data. First an historical over-
view of the known approaches is given. Then we apply the
approximate inverse method to this problem. This method
is known to be very efficient and stable with respect to
noise-contaminated data. It is even possible to prove con-
vergence and it allows an error estimate of the calculated
depth resolved residual stress profile.
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1. Introduction

Nowadays residual stress measurements are usually carried
out using the sin2 w method which requires the residual
stress to be almost constant within the penetration depth.
This condition does not hold true for machined ceramics.
To calculate the depth-resolved residual stress state, various
methods have already been proposed. In this article, we pre-
sent a method which is based on the theory of ill-posed pro-
blems.

2. Historical overview

The influence of residual stress gradients has been dis-
cussed since the end of the 1940s [48Oss]. The first ap-
proaches which were published in the beginning of the 80s
were linear generalisations of the sin2 w method [80Pei,
84Hau]. They turned out to be numerically stable but yield
a linear increasing residual stress which contradicts the me-
chanical boundary conditions. Nonlinear methods lead to
strong instabilities in the solution [89Oet]. The attempt to
avoid instability by choosing seemingly realistic functions
influences the calculated result strongly [88Hau, 92Rup].

In a first attempt to use a general class of functions, poly-
nomials were used [92Eig]. In this case the instability of the
solutions does not lead to satisfying results. Based on this
result the AP (Abschnitt-Polynom, spline) method has been
developed [96Lev]. Other base functions can be found in
[00Beh]. All these methods use a least-square fitting to the
model functions (least-squares method, see Section 3).
Here, a more general approach is presented.

3. Mathematical base

To calculate the residual stress rij as a function of the depth
z, the following basic formula of X-ray diffraction (1) is to
be inverted.

Dhu;wðsÞ ¼
X

i;j

ri;jðu;wÞ
1
s

Z1

0

dz e�
z
srijðzÞ ð1aÞ

where

r11ðu;wÞ ¼ �tan h0
S2

2
cos2 u sin2 wþ S1

� �

r22ðu;wÞ ¼ �tan h0
S2

2
sin2 u sin2 wþ S1

� �
ð1bÞ

when the residual stress tensor rij is diagonal and r33 = 0.
Dhu,w denotes the stress induced peak shift, w the tilt angle,
u is the rotation angle of the measurement device, h0 means
the peak position of the unstressed probe, and s is the pene-
tration depth of the X-ray beam which depends on the at-
tenuation of the material. S1 and S2 are materials constants
and z the depth co-ordinate. Using measurements with vary-
ing rotation angles u, the Laplace transformed function
r
^

ij(s) of rij(z) can be calculated from Eqs. (1a, b). Using
the scattering vector mode yields r

^

ij(s) in a direct way
[94Gen]. The inverse Laplace transform turns out to be the
crucial difficulty.

As discussed above many approaches to calculate the re-
sidual stress depth profile rij(z) from measurement data
have been published in recent years. The basic concept is
always to describe the component functions rij(z) of the re-
sidual stress tensor as functions with free parameters

rijðzÞ ¼ fijð1aij;2 aij;3 aij; :::Þ ð2Þ

The model function fij is Laplace-transformed and put in the
basic formula of X-ray diffraction [Eq. (1)]. The free para-
meters are adjusted by a least-squares method minimizing
the residuum of the measurement data and the data which
result from the calculated solution. These parameters deter-
mine the component functions rij(z) as it follows from
Eq. (2). As model functions, which are necessary to apply
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the least squares method, were proposed e. g. exponential
functions [93Pre], Taylor polynomials [94H)r], tent func-
tions [94Zhu], Jacobi polynomials [94Gen], piecewise line-
ar functions [95Zhu], trigonometric functions [97Wer], pro-
ducts of polynomials and exponential functions [84Hau,
92Eig], and splines [96Lev].

4. Application of the approximative inverse method
(AIM)

The concept of the AIM was developed to solve inverse and
ill-posed problems [90Lou, 96Lou]. Here, the equation

LrðsiÞ :¼
Z1

0

e�
z
sirðzÞ dz ¼ r

^ðsiÞ

which defines the reciprocal Laplace transform L has to be
considered to calculate the residual stress r(z) from a finite
number of given measurement data scanning points si. The
basic concept is to calculate a mollified version of the solu-
tion

rcðzÞ ¼
Z1

0

rðz0Þ ecðz0; zÞ dz0 ð4Þ

instead of the solution itself. The so-called mollifier ec is an
approximation to Dirac’s delta distribution leading to a
smooth approximation rc of r. This suppresses the influ-
ence of noise in the measurement data to the solution. If
the equation

L�~uucðzÞ ¼ ecðzÞ ð5Þ

can be solved the regularized solution is given by

rcðzÞ ¼
X
si

r
^ðsiÞ~uucðsi; zÞ ð6Þ

as follows from

rcðzÞ ¼
Z1

0

rðz0Þ ecðz; z0Þ dz0 ¼
Z1

0

rðz0Þ L�~uucðz; z0Þ dz0

¼
X
si

r
^ðsiÞ~uucðsi; zÞ ð7Þ

where we used Eqs. (4) and (5) and the definition of the ad-
joint of an operator. The vector~uuc solving Eq. (5) is called
reconstruction kernel. Its length is equal to the number of
scanning points si. For a finite number of data scanning
points a collocation method is used to transform Eq. (5) into
a system of linear equations, where the collocation points
are chosen equal to the data scanning points si:

Cm~uucðzÞ ¼~eecðzÞ ð8Þ

Due to the fact that inversion of the Laplace transform is a
severely ill-posed problem, the matrix Cm is ill conditioned
as well. Therefore, an additional regularization is used:

Cm þ q1ð Þ~uuqcðzÞ ¼~eecðzÞ ð9Þ

where 1 denotes the identity matrix and q is a small real
number. As solution of Eq. (9) we obtain the reconstruction
kernels. The multiplication of these reconstruction kernels
with the measurement data yields the approximation to
r(z):

rqcðzÞ ¼
X
si

r
^ðsiÞ~uuqcðsi; zÞ ð10Þ

5. Properties of the method

The most important difference between this method and the
procedures known from literature is that the AIM takes the
measurement error into account. It is applicable for a set of
arbitrarily distributed tilt angles w. Since the system (9) is
solved independently from the measurement data it is stable
with respect to noise. The main advantage can be seen in the
fact that the error in the calculated solution can be esti-
mated.

For a given choice of q which depends on the number of
scanning points m the error can be estimated with the fol-
lowing equation [03Sch]:

rðzÞ � rqcðzÞ
��� ���

rðzÞk k 
 dcmðzÞ þ nmðzÞ ð11Þ

The left-hand side of Eq. (11) represents the relative error in
the calculated solution. The second summand on the right-
hand side represents the discretization error which tends to
0 as m goes to infinity. The other summand dcm depends first
on how exactly the solution of Eq. (9) solves Eq. (5) and
second on the approximation accuracy of ec to Dirac’s delta
distribution. dcm represents an unavoidable error which tends
to 0 for c! 0 and m!1 , but is non-zero in the general
case. Thus, the unavoidable error is smaller for a larger
number of scanning points. For exact data it is possible to
choose c » 0. In this case the approximate solution (10)
converges to the exact solution as long as the exact solution
is square integrable. Noisy data require c > 0. In this case a
certain error in the result is unavoidable.

6. Numerical tests

To test the method two curves were Laplace transformed
and recovered. Fig. 1 shows the results. Good accuracy can
be obtained even at greater depths z/smax (Figs. 1a and b)
and even if the function is not continuously differentiable
as shown in Fig. 1a. The reconstruction accuracy is higher
when the data points are equally spaced in 1/s than when
equally spaced in the penetration depth s.

7. Application of the AIM

We used the AIM to calculate the residual stress depth pro-
file of a ground corundum (Al2O3) specimen. The cutting
speed was vc = 35 m/s. The feed rate vft and the bond type
have been varied (Fig. 2). The measurement used a maxi-
mum tilt angle of wmax = 87� and was carried out with syn-
chrotron radiation at HASYLAB (DESY), Hamburg. The
peak positions were determined by fitting the data with
Pearson- VII functions using a linear background correc-
tion. The evaluation with the AIM yields the residual stress
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Fig. 1. Achievable accuracy, reconstructions
with synthetic data, smax denotes the maximal
penetration depth corresponding to the reflec-
tion angle h0 . Curves of a continuous function
(a) and a continuously differentiable function
(b) have been used.

Fig. 2. Measured peak positions using low (a,
c) and high feet rates (b, d). The bond types
have been varied: (a, b): synthetic resin bond,
(c, d): ceramic bond. The peak positions were
measured using two rotation angles u = 0�
and u = 90�. k denotes the wavelength.

Fig. 3. Calculated residual stress depth pro-
files depending on the depth z for the stress
components r11 (b) and r22 (a) corresponding
to the data from Fig. 2. The regularization
parameters of the AIM [see Eq. (10)] are cho-
sen as indicated in the box above.



depth profiles shown in Fig. 3. The high feed rate vft (speci-
mens 2 and 4) leads to higher compressive residual stress
states for the component along the moving direction of the
diamond grains r11 corresponding to the rotation angle
u = 0�. This can be explained by lower temperatures in the
contact zone. For the component perpendicular to the mov-
ing direction r22 (corresponding to u = 90�) the high feed
rate leads to higher compressive residual stress only for the
specimen machined with a grinding wheel having a ceramic
bond.

8. Conclusions

The approximate inverse method (AIM) has been used to
calculate the residual stress profile from X-ray diffraction
data. Since it is based on a regularization approach, the in-
fluence of noise in the data to the solution can be damped.
Numerical tests show satisfying results even when the data
are noisy. The AIM was used to evaluate the residual stress
depth profile of a ground corundum specimen. It was found
that the residual stress depends on the feed rate. Because of
the small number of characterized specimens, further tests
are necessary to emphasize the properties of the AIM.
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