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Spherical Radon transform

It is defined by

R : L2
e(S2) −→ L2

e(S2),

R f(η) =
1
2π

∫

〈ω,η〉=0

f (ω) wη
⊥

2 (dω).

wη
⊥

2 ( · ) surface area measure on the subsphereS2∩ η⊥,

L2
e(S2) even functions inL2 over the sphereS2.

Properties of the transform

The spherical Radon transform

• is a linear, continuous operator,

• is self-adjoint, i.e.R= R∗,

• is a bijection fromC∞e (S2) toC∞e (S2),

• commutates with rotations, i.e. for allφ ∈ S O3 we have

R(Tφ f ) = TφR f

with Tφ f (x) ≔ f (φ−1x).

Analytic inversion formula

Forg ∈ C∞e (S2) the following inversion formula holds

g(ξ) =
1
2π

(

∂

∂(µ2)

)
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{〈ξ,ω〉2>µ2} ∩S2

Rg(ω)|〈ξ, ω〉|

{〈ξ, ω〉2 − µ2)1/2
dω
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Problem: This formula cannot be used numerically.

Approximate Inverse

•We are looking for the solution ofR f = g.

• Instead of f , we reconstruct an approximate versionfγ with the
property

fγ → f as γ ց 0.

• Solve the auxiliary problem

R∗ψγ(x, ·) = Rψγ(x, · )
!
= eγ(x, · ),

with chosenmollifier eγ andreconstruction kernelψγ. Then define

fγ(x) ≔ 〈 f ,eγ(x, · )〉 = 〈g, ψγ(x, · )〉.

• Advantages

– Built in regularization.
– Auxiliary problem is solvable independent of the rhsg.

This leads to an efficient and stable algorithm.

Desired mollifiers

• The spherical Radon transform is only defined for even functions,
so only even mollifiers are applicable.

•Due to the rotational invariance, it suffices to declareeγ for an
arbitrary reconstruction pointx. We choose the third unit vectore3
and consider mollifiers which only depend on the polar angleθ.

Two interesting examples of mollifiers can be seen in the following
figures as functions of the polar angleθ.

Figure 1: Characteristic mollifier. Figure 2: Gauss mollifier.

Reconstruction kernels

• Example 1:

ψγ(e3, y) = c(γ) ·















1, if |y3| < sin(γ),
2γ

2γ−π, else.

The associated mollifier can now be calculated viaRψγ = eγ:

Figure 3: Spherical plot ofeγ.
Figure 4: Associated mollifier as
function ofy3.

• Example 2:

Figure 5: Second reconstruction
kernel as function ofy3.

Figure 6: Associated mollifiereγ
as function ofy3.

Numerical integration over the sphere

We use the formula

∫

S2

f (ω) dω ≈ 2
m
∑

k=1

n
∑

l=1

g(θk, φl)
M(Ak)

m
,

with g(θ, φ) := f (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) for an even
function f .

We discretize the sphere as
seen in the figure on the right
hand and weight the data with
the corresponding surface area.

Numerical results

Simulated data

We consider the function

f (x, y, z) = cos(12y) · (1− |z|)

to test our algorithm.

Figure 7: Spherical plot of the
data.

Figure 8: Radon transform off .

Reconstruction from exact data

We assume knowledge of the exact data at spherical coordinates with
polar angleθi and azimuth angleφ j :

θi =
(i−1)π
100 , i = 1, . . . ,50,

φ j =
( j−1)2π

100 , j = 1, . . . ,100.

Figure 9: Reconstruction with
the first reconstruction kernel
(γ = 0.1).

Figure 10: Reconstruction with
the second reconstruction ker-
nel (γ = 0.15).

Reconstruction from noisy data

We perturb the Radon transform off with various noise and use the
second kernel for the reconstruction.

Figure 11: Uniformly dis-
tributed noise in [-0.15,0.15].

Figure 12: Reconstruction from
noisy data.

Figure 13: Normally dis-
tributed noise withσ = 0.2.

Figure 14: Reconstruction from
noisy data .
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