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Spherical Radon transform

It Is defined by

R: L3(S?) — LS,
1

RIO) =5 [ flo)w] (o)
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1
V\/; () surface area measure on the subsplsére n*,

L2(S%) even functions irL.2 over the sphers&?.

Properties of the transform

The spherical Radon transform
e IS a linear, continuous operator,
e is self-adjoint, i.eR = R,
e is a bijection fromCL(S?) to CX(S?),
e cOmmutates with rotations, i.e. for @lle S O3 we have

R(Ts f) = Ty Rf

with T f(X) := f(¢71x).

Analytic inversion formula

Forg € CX(S?) the following inversion formula holds

1 %,
9e) = 2ﬂ(0(u2)) f

{(E.w)y*>p?NS?

Rw)(§, w)l

(€, w)2 — u?)1/2 o

Problem: This formula cannot be used numerically.

Approximate Inverse

¢ \We are looking for the solution &R f = g.

e Instead off, we reconstruct an approximate versigpwith the
property

fy,—-f as v\ 0.

e Solve the auxiliary problem

RAYy(X, ) = Riy(X ) = €,(X, -).

with chosemmollifier e, andreconstruction kernel,. Then define

fy(x) = <f7 e‘y(xa )> — <ga %/(Xa )>

e Advantages

—Built in regularization.
— Auxiliary problem is solvable independent of the s

This leads to anfécient and stable algorithm.
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Desired mollifiers

e The spherical Radon transform is only defined for even functio
so only even mollifiers are applicable.

e Due to the rotational invariance, it fices to declares, for an
arbitrary reconstruction poirk We choose the third unit vectes
and consider mollifiers which only depend on the polar afigle

Two interesting examples of mollifiers can be seen in the followi
figures as functions of the polar angle
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Figure 2: Gauss mollifier.

Figure 1: Characteristic mollifier.

Reconstruction kernels

e Example 1:

1, If lysl <sin(),
‘ﬁy(e& y) = c(y) - { 22’y  else.
y—Tr

The associated mollifier can now be calculatedRig = e
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_ _ Figure 4. Associated mollifier a
Figure 3: Spherical plot ofy. fynction ofya.

e Example 2:
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Figure 5. Second reconstructibigure 6: Associated mollifieg,
as function ofys.

kernel as function ofs.

Numerical integration over the sphere

We use the formula

[ frdo=23 > gt o=t

with g(0, ¢) .= f(sin(@) cosg), sin() sin(p), cosP)) for an even
function f.

We discretize the sphere as
seen In the figure on the right
hand and weight the data with-
the corresponding surface area.

Numerical results

Simulated data

We consider the function
f(x,y,2) = cos(13) - (1-12)

to test our algorithm.
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Figure 7: Spherical plot of the Figure 8: Radon transform df

data.

Reconstruction from exact data

We assume knowledge of the exact data at spherical coordinates
polar angled; and azimuth anglé; :
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Figure 10: Reconstruction with
the second reconstruction ker
nel (y = 0.15).

Figure 9. Reconstruction with
the first reconstruction kernel

(v =0.1).

Reconstruction from noisy data

We perturb the Radon transform dfwith various noise and use the
second kernel for the reconstruction.
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Figure 12: Reconstruction from
noisy data.

Figure 11: Uniformly dis-
tributed noise in [-0.15,0.15].
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Figure 14: Reconstruction from
noisy data .
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Figure 13: Normally dis-
tributed noise withr = 0.2.
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