AIms

Vector field tomography (VFT) deals with the problem of reco
structing a vector field, e.g. a velocity field of an incompgre
Ible, moving fluid, from line integrals of projections of thieeld.
The integral data can be measured yltrasound reflecting
particle
assume that the Doppler shift of the
frequency Is approximately propor-
tional to the velocity of the parti-
cle in the fluid which causes the
shift. This is a reasonable assump-
tion when the particle velocity is
significantly smaller than the speed
of sound within the medium un-
der consideration. Mathematically
we have to invert the vectorial cone Measurement sziﬁgl\jﬁt%two orthogonal cir-
beam transform. cles as scanning cunie

VFT has applications in photoelasticity, oceanographwy-adestructive
testing and medical imaging where we may think of tumor deiady
reconstructing and visualizing blood flow which is known t® imore
Irreqgular and more intense around tumors than in normaldiss

detector

Cone beam transform

It Is defined for a tensor field of rank by

Dmf (o, w) = JZOO f (@ + tw), ™) dt
00 | | (1)
= i fi,..i (a+tw) Wl wmdt,
Jo

wherea € T is a source point of the scanning cuivec R™MQ which
surrounds the obje®®, w € S is the unit vector of direction of the line
andf is a tensor field of rankn with compact support in the open domai
Q. In (1) we use Einstein’s summation rule, that means we suvap
equal indices;, where 1< ij < n.

m = 0: well-known scalar cone beam transform of a scalar ffeld

Dof (a,w)zﬁmf(a+tw) dt . (2)

m = 1: cone beam transform of a vector fidld

D1f (a, w) = j:o f (o + tw) , w) dt . (3)

Hence the mathematical problem of 3D cone beam VFT condlists o
verting Df = g for given measuremeng The method ofapproxi-
mateinverseintroduced by Louis and Maass [1] delivers a mathematigal
framework for coping with inverse problems in affi@ent way.

Mathematical Properties of D

Let S™ be the set of all symmetric, covariant tensors of ramk
S™={f = fi,i,0X1®- - @dxm fori<ij<nl<j<m,
Tensors of rank 1 are vectorstY. A mapping
X f(X) = fil...im(x)dxil ®--@dXm xe0
represents a symmetric, covariant tensor field. Tensossfafldank O are
scalar functiond (x), tensor fields of rank 1 are vector fielf{x) in R".

The space of square integrable, symmetric, covariant tdiedts of rank
min Q c R"is denoted by

L2(Q,8™) = {f e S™: [Ifll2 = (F, )3 < oo},
where thel2-inner product of two tensor fields is given as

f,9)2 = fg n fi i (g Tm(x) dx .

Theorem 1.
Let Q" = {xeR":|x <1} with 0Q" = S"™1  The mapping
D : L2(Q",8™) — L2(I' x S"1) is linear and bounded, if

f(lczl — 1)1—n da < .
r
Theadjoint (backprojectionp* : L?(I' x S™1) — L2(QM, 8™) is given

by
0'99 = [ {ix-a g0 (x- o)} dor

where(x— o)M= (X-a)®...® (X—a) € SM.
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m = 0, n = 3: cone beam transform with corresponding backprojectipn
operator of scalar fields, thoroughly investigated in 3D CT
m=1,n = 3: 3D cone beam VFT, the backprojection reads as

D*g(x)=fr|x—ar2g(x‘“) X2 4)

IX—a|]|X-a|

One of the crucial tools when computing reconstruction kernelsatas

cone beam tomography is tlhermula of Grangeat [3]. We proved a

generalization of that formula which is valid for any tensor field otkra
min ndimensions.

Theorem 2. (Schuster [4] based on Hamaker et al. [5])
Assumen > 2 andf € an—z) (Q", SM). Then,

5(n-2)
Rf M (w, (@, w))
os2) (5)

= (-1)("-2) Df (a, 8) 6""2) ((w, 8)) dS(6) ,
Sn—l

wherea € T, w € S 1 dS denotes the surface measuresh! R is
then-dimensional Radon transform and

709 = (00, Ix = ol ™™ (x— &)™) |
= fi i ()X a ™ (x = @)1+ (x - @)i"

IS the projection of onto &:gl.

Form=1,n= 3 formula (5) reads as

9,
Pl fM(w, (@, w))

_ f (VD (@,y = 6),w) dS(6) .
S2n{(8,w)=0}

In the scalar case a solver fOrcan be constructed with the help of (5
This is done by inverting the Radon transfoRtwhich is possible if the
condition of Tuy-Kirillov is satisfied. It tells that we have full kntedge
of Rf"(w, ) for all w, s, if any plane intersecting the objef does
also have at least one intersection point with the scanning dua/&c
this intersection must be non-transversally. Unfortunately thas amt
help in casan > 1, since there the functiof)) depends o and hence
the object functionf!" of R changes withy, see (6). Thus we seek a
alternative way of solvingpf = gin casem =1, i.e. for vector fields$.

(6)

Approximation of Reconstruction Kernels

The method oBpproximate inver sewas established by Louis and Maag

[1] in 1990, see also [6], [7], and was successfully applied to sevdral
reconstruction problems in non-destructive testing and medical ngag
such as computerized tomography and Doppler tomography. Resultg for
Doppler tomography in the parallel geometry were presented in [8].§In
[2] the method was applied to 3D cone beam tomography, i.BgtdVe
describe this approach and formulate its extensiddito

Let f € L2 (93). The approximate inverse computes a smoothed versjon

of f by convolvingf with a mollifiere, € C* (R3). A mollifier e, is a
smooth function with small essential support having the property that

£, = (fre)(x) - f(X) asy—0.

+ denotes the convolution: (f = h) (X) = f3 f(y — x) h(y) dy

R
Usage of Gaussian kernel fey: (X) = > ex (—ﬁ) (7)
9 6. &X) = (27)7 p 2,2

Provided that we can solve the equatiom |vy/(x)| = e,(x - )
then: f,(X) = <D0f,Vy(X)>L2(FX52)

:frfSZ(Dof)(a,w) v, (X @, w) dS(w) da .

wherevy(x) = V)(x ,w) € L?(I'x S?) for x € Q is called a recon-
struction kernel. Hence the method of approximate inverse consist§ of
evaluating inner products of the given d&tgf with reconstruction ker-
nelsv,,(X), what can be done in arf®ient way by using the translatio
Invariance ofey.

To apply the method t®, and hence to VFT, we construct mollifie
fieldsE, e L2(Q3, 1) defining

E)(X) = ey(x)-ej, je({l23)
wheree; = (1,0,0)", e = (0,1,0)", andes = (0,0,1)". Using again
the Gaussian (7) as mollifiex, we have

(fy), (9 = (f ) E,Jy) (¥) - fi(x) asy -0

for f € L2(Q3,S%). Unfortunately, by now the exact reconstruction kef-
nelsVJ(x), i.e. the solutions ab% [V, (x)| = E)(x~) are still unknown.

But the special structure of the mollifier fieltts allow for a computation
of reconstruction kernels for

Pf (o, w) = f f(a + tw) dt
0
with the help of kernels foDg.

Theorem 3.
Let v, be the reconstruction kernel assoclate@tavith respect taDy,

that is §
D, [vy(x)] = €y(X—").
DefiningVy,(x; o, ) = V(X , ) - € € L?(I" x S% R3) yields
x|\/] _ el
P VI = EJx =),

that meanS/i IS a reconstruction kernel associatediﬂpwith respect to
P. The adjointP™ of P is given as

P*g(x)=fr|x—ar2g(a X‘“)da

IX = af

for g € L? (F x S2, R3).

The dataPf are not known and cannot be computed friogh. Moreover,
observing thaD+f (o, w) = (Pf (o, ), w) and sincePf (@, w) € R3 we
get

Pf (o, w) = D1f (o, w) w + A1 (a, wf) (uf + Ao (a, w%) w% ,

wherew+

1 2 1L, 1] :
L w3 € S? are such tha{tw, ‘“1"*’2} is an orthonormal basis of

R3 and4, 1, are appropriate cdécients. Thus approximating

Pf (o, w) ~ D1f (o, w) w
we neglect the parts orthogonalktcand can apply the method of appro
Imate inverse using the reconstruction kerr\éis‘or P.

Algorithm for Cone Beam VFT

Given : Measured dat@;f (o, w) fora €T, w € S?
Output : Approximatiorf, tof
Compute

*9 () = D1f (2, ) w
(), (0 = (8. Vi)

L2(TxS2R?)

_ fr fs 2<g(a,w),v;(x;a,w)> dS(w) dar
for | € {1, 2, 3}.

Numerical Experiments

Figure 2 displays first results of our algorithm when applied to k-
act, simulated data for solenoidal vector fields. The scanning curve
wasT = rS°n {x3=0}, that is a circle of radiug > 0 in the

plane {x3 = 0}. The mollifier e, defining the fieldsEJy was chosen
as the Gaussian (7) and the reconstruction was done in the pfane
(x3=0}. On the left the vector fieldy(x) = (1-x5-x50,0)7
and its reconstruction are depicteth(xX) = (—=xp,X1,0) " and the
result of the described algorithm are shown on the right. The re§u-
larization parameter wag = 0.007 andy = 0.00692 respectively.

Top-LEFT: Original vector field

f1(X) = (1 — %5 — 5,0, O) T

Original vector field

fo(X) = (=2, X1,0) .

Reconstruction foy = 0.007

using exact, simulated dalf.

MiopLe-RigaT: Reconstruction foy = 0.00692 1
using exact, simulated daiaf,. -

RIGHT: Example of a reconstruction

kernel fory = 0.007.

Tor-RiGHT:

MIpDLE-LEFT:

FIGURE 2
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