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Aims

Vector field tomography (VFT) deals with the problem of recon-
structing a vector field, e.g. a velocity field of an incompress-
ible, moving fluid, from line integrals of projections of thefield.
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Measurement setup with two orthogonal cir-
cles as scanning curveΓ

The integral data can be measured
using ultrasound signals when we
assume that the Doppler shift of the
frequency is approximately propor-
tional to the velocity of the parti-
cle in the fluid which causes the
shift. This is a reasonable assump-
tion when the particle velocity is
significantly smaller than the speed
of sound within the medium un-
der consideration. Mathematically
we have to invert the vectorial cone
beam transform.
VFT has applications in photoelasticity, oceanography, non-destructive
testing and medical imaging where we may think of tumor detection by
reconstructing and visualizing blood flow which is known to be more
irregular and more intense around tumors than in normal tissue.

Cone beam transform

It is defined for a tensor field of rankm by

Dmf (α,ω) =
∫ ∞

0

〈

f (α + tω) , ωm〉

dt

=

∫ ∞

0
fi1···im (α + tω)ωi1 · · ·ωim dt ,

(1)

whereα ∈ Γ is a source point of the scanning curveΓ ⊂ Rn\Ω which
surrounds the objectΩ, ω ∈ S 2 is the unit vector of direction of the line
andf is a tensor field of rankm with compact support in the open domain
Ω. In (1) we use Einstein’s summation rule, that means we sum upover
equal indicesi j, where 1≤ i j ≤ n.

m = 0: well-known scalar cone beam transform of a scalar fieldf

D0 f (α,ω) =
∫ ∞

0
f (α + tω) dt . (2)

m = 1: cone beam transform of a vector fieldf

D1f (α,ω) =
∫ ∞

0
〈f (α + tω) , ω〉 dt . (3)

Hence the mathematical problem of 3D cone beam VFT consists of in-
verting Df = g for given measurementsg. The method ofapproxi-
mate inverse introduced by Louis and Maass [1] delivers a mathematical
framework for coping with inverse problems in an efficient way.

Mathematical Properties of D

LetSm be the set of all symmetric, covariant tensors of rankm

Sm =
{

f = fi1···imdxi1 ⊗ · · · ⊗ dxim
}

for 1 ≤ i j ≤ n, 1 ≤ j ≤ m.

Tensors of rank 1 are vectors inRn. A mapping

x 7→ f(x) = fi1···im(x)dxi1 ⊗ · · · ⊗ dxim x ∈ Ω

represents a symmetric, covariant tensor field. Tensor fields of rank 0 are
scalar functionsf (x), tensor fields of rank 1 are vector fieldsf(x) in Rn.
The space of square integrable, symmetric, covariant tensor fields of rank
m in Ω ⊂ Rn is denoted by

L2 (

Ω,Sm)

≔

{

f ∈ Sm : ‖ f ‖L2 = 〈f, f〉
1/2

L2 < ∞
}

,

where theL2-inner product of two tensor fields is given as

〈f, g〉L2 =

∫

Ωn
fi1···im(x)gi1···im(x) dx .

Theorem 1.
Let Ωn

≔

{

x ∈ Rn : |x| < 1
}

with ∂Ωn = S n−1. The mapping
D : L2 (

Ωn,Sm)

→ L2
(

Γ × S n−1
)

is linear and bounded, if
∫

Γ

(|α| − 1)1−n dα < ∞ .

Theadjoint (backprojection)D∗ : L2
(

Γ × S n−1
)

→ L2 (

Ωn,Sm)

is given
by

D∗g(x) =
∫

Γ

{

|x − α|1−n−m g

(

x − α
|x − α|

)

(x − α)m
}

dα ,

where(x − α)m = (x − α) ⊗ . . . ⊗ (x − α)
︸                       ︷︷                       ︸

m times

∈ Sm.

m = 0, n = 3: cone beam transform with corresponding backprojection
operator of scalar fields, thoroughly investigated in 3D CT
m = 1, n = 3: 3D cone beam VFT, the backprojection reads as

D∗g(x) =
∫

Γ

|x − α|−2 g

(

x − α
|x − α|

)

x − α
|x − α|

dα . (4)

One of the crucial tools when computing reconstruction kernels in scalar
cone beam tomography is theformula of Grangeat [3]. We proved a
generalization of that formula which is valid for any tensor field of rank
m in n dimensions.

Theorem 2. (Schuster [4] based on Hamaker et al. [5])
Assumen ≥ 2 andf ∈ C(n−2)

0
(

Ωn,Sm)

. Then,

∂(n−2)

∂s(n−2)
R f m
α (ω, 〈α,ω〉)

= (−1)(n−2)
∫

S n−1
Df (α, θ) δ(n−2) (〈ω, θ〉) dS (θ) ,

(5)

whereα ∈ Γ, ω ∈ S n−1, dS denotes the surface measure onS n−1, R is
then-dimensional Radon transform and

f m
α (x) =

〈

f(x), |x − α|−m (x − α)m
〉

= fi1...im(x) |x − α|−m (x − α)i1 · · · (x − α)im

is the projection off onto x−α
|x−α|.

For m = 1, n = 3 formula (5) reads as

∂

∂s
R f m
α (ω, 〈α,ω〉)

=

∫

S 2∩{〈θ,ω〉=0}

〈

∇yD f (α, y = θ) , ω
〉

dS (θ) .
(6)

In the scalar case a solver forD can be constructed with the help of (5).
This is done by inverting the Radon transformR which is possible if the
condition of Tuy-Kirillov is satisfied. It tells that we have full knowledge
of R f m

α (ω, s) for all ω, s, if any plane intersecting the objectΩ does
also have at least one intersection point with the scanning curveΓ and
this intersection must be non-transversally. Unfortunately that does not
help in casem ≥ 1, since there the functionf m

α depends onα and hence
the object functionf m

α of R changes withα, see (6). Thus we seek an
alternative way of solvingD f = g in casem = 1, i.e. for vector fieldsf.

Approximation of Reconstruction Kernels

The method ofapproximate inverse was established by Louis and Maas
[1] in 1990, see also [6], [7], and was successfully applied to several
reconstruction problems in non-destructive testing and medical imaging,
such as computerized tomography and Doppler tomography. Results for
Doppler tomography in the parallel geometry were presented in [8]. In
[2] the method was applied to 3D cone beam tomography, i.e. toD0. We
describe this approach and formulate its extension toD1.
Let f ∈ L2

(

Ω3
)

. The approximate inverse computes a smoothed version

of f by convolving f with a mollifier eγ ∈ C∞
(

R
3
)

. A mollifier eγ is a
smooth function with small essential support having the property that

fγ(x) ≔
(

f ∗ eγ
)

(x)→ f (x) asγ → 0 .

∗ denotes the convolution: ( f ∗ h) (x) =
∫

R3
f (y − x) h(y) dy

Usage of Gaussian kernel foreγ: eγ(x) =
γ−3

(2π)3/2
exp



−
|x|2

2γ2



 (7)

Provided that we can solve the equation:D∗0
[

vγ(x)
]

= eγ(x − ·)

then: fγ(x) =
〈

D0 f , vγ(x)
〉

L2(Γ×S 2)

=

∫

Γ

∫

S 2

(

D0 f
)
(α,ω) vγ (x;α,ω) dS (ω) dα ,

wherevγ(x) = vγ(x;α,ω) ∈ L2
(

Γ × S 2
)

for x ∈ Ω is called a recon-
struction kernel. Hence the method of approximate inverse consists of
evaluating inner products of the given dataD0 f with reconstruction ker-
nelsvγ(x), what can be done in an efficient way by using the translation
invariance ofeγ.
To apply the method toD1 and hence to VFT, we construct mollifier
fieldsEγ ∈ L2

(

Ω3,S1
)

defining

E j
γ(x) ≔ eγ(x) · e j , j ∈ {1,2,3}

wheree1 = (1,0,0)⊤, e2 = (0,1,0)⊤, ande3 = (0,0,1)⊤. Using again
the Gaussian (7) as mollifiereγ we have

(

fγ
)

j
(x) ≔

(

f ∗ E j
γ

)

(x)→ f j(x) asγ → 0

for f ∈ L2
(

Ω3,S1
)

. Unfortunately, by now the exact reconstruction ker-

nelsV j
γ(x), i.e. the solutions ofD∗1

[

Vγ(x)
]

= E j
γ(x−·) are still unknown.

But the special structure of the mollifier fieldsEγ allow for a computation
of reconstruction kernels for

Pf (α,ω) =
∫ ∞

0
f (α + tω) dt

with the help of kernels forD0.

Theorem 3.
Let vγ be the reconstruction kernel associated toeγ with respect toD0,
that is

D∗0
[

vγ(x)
]

= eγ(x − ·) .

DefiningV j
γ(x;α,ω) = vγ(x;α,ω) · e j ∈ L2

(

Γ × S 2,R3
)

yields

P∗
[

V j
γ(x)

]

= E j
γ(x − ·) ,

that meansV j
γ is a reconstruction kernel associated toE j

γ with respect to
P. The adjointP∗ of P is given as

P∗g(x) =
∫

Γ

|x − α|−2 g
(

α,
x − α
|x − α|

)

dα

for g ∈ L2
(

Γ × S 2,R3
)

.

The dataPf are not known and cannot be computed fromD1f. Moreover,
observing thatD1f (α,ω) = 〈Pf (α,ω) , ω〉 and sincePf (α,ω) ∈ R3 we
get

Pf (α,ω) = D1f (α,ω)ω + λ1
(

α,ω⊥1

)

ω⊥1 + λ2
(

α,ω⊥2

)

ω⊥2 ,

whereω⊥1 , ω
⊥
2 ∈ S 2 are such that

{

ω,ω⊥1 , ω
⊥
2

}

is an orthonormal basis of

R
3 andλ1, λ2 are appropriate coefficients. Thus approximating

Pf (α,ω) ≈ D1f (α,ω)ω

we neglect the parts orthogonal toω and can apply the method of approx-
imate inverse using the reconstruction kernelsV j

γ for P.

Algorithm for Cone Beam VFT

Given : Measured dataD1f (α,ω) for α ∈ Γ, ω ∈ S 2

Output : Approximationfγ to f
Compute :

• g (α,ω) = D1f (α,ω)ω

•
(

fγ
)

j
(x) =

〈

g,V j
γ(x)

〉

L2(Γ×S 2,R3)

=

∫

Γ

∫

S 2

〈

g (α,ω) ,V j
γ (x;α,ω)

〉

dS (ω) dα

for j ∈ {1,2,3}.

Numerical Experiments

Figure 2 displays first results of our algorithm when applied to ex-
act, simulated data for solenoidal vector fields. The scanning curve
was Γ = rS 2 ∩

{

x3 = 0
}

, that is a circle of radiusr > 0 in the
plane

{

x3 = 0
}

. The mollifier eγ defining the fieldsE j
γ was chosen

as the Gaussian (7) and the reconstruction was done in the plane
{

x3 = 0
}

. On the left the vector fieldf1(x) =
(

1− x2
2 − x2

3,0,0
)
⊤

and its reconstruction are depicted,f2(x) = (−x2, x1,0)⊤ and the
result of the described algorithm are shown on the right. The regu-
larization parameter wasγ = 0.007 andγ = 0.00692 respectively.

T-L: Original vector field
f1(x) =

(

1− x2
2 − x2

3,0,0
)
⊤.

T-R: Original vector field
f2(x) = (−x2, x1,0) ⊤.

M-L: Reconstruction forγ = 0.007
using exact, simulated dataD1f1.

M-R: Reconstruction forγ = 0.00692
using exact, simulated dataD1f2.

R: Example of a reconstruction
kernel forγ = 0.007.
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