Universität des Saarlandes
FR Mathematik
Arbeitsgruppe Prof. S. Rjasanow

Institut für angewandte Mathematik

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen gezeigt.

Link zu dieser Vergleichsansicht

Both sides previous revision Previous revision
ag:weisser_en [2018/11/09 10:11]
agrja [Publications]
ag:weisser_en [2019/01/13 17:35] (aktuell)
agrja Enumath 2017 paper online veröffentlicht
Zeile 139: Zeile 139:
   * S. Rjasanow, S. Weißer: //ACA improvement by surface segmentation//,​ 2018 (to appear)   * S. Rjasanow, S. Weißer: //ACA improvement by surface segmentation//,​ 2018 (to appear)
   * S. Weißer: //​Anisotropic polygonal and polyhedral discretizations in finite element analysis//, ESAIM Mathematical Modelling and Numerical Analysis, 2018 (to appear)   * S. Weißer: //​Anisotropic polygonal and polyhedral discretizations in finite element analysis//, ESAIM Mathematical Modelling and Numerical Analysis, 2018 (to appear)
-  * P. F. Antonietti, S. Berrone, M. Verani, S. Weißer: The Virtual Element Method on Anisotropic Polygonal Discretizations,​ In: //Numerical Mathematics and Advanced Applications - ENUMATH 2017//, //Lecture Notes in Computational Science and Engineering//,​ Springer International Publishing (to appear)+
  
  
Zeile 156: Zeile 156:
  
 === Reviewed Book Contributions === === Reviewed Book Contributions ===
 +  * P. F. Antonietti, S. Berrone, M. Verani, S. Weißer: The Virtual Element Method on Anisotropic Polygonal Discretizations,​ In: F. Radu, K. Kumar, I. Berre, J. Nordbotten, I. Pop (Eds.) //Numerical Mathematics and Advanced Applications - ENUMATH 2017//, Vol. 126 of //Lecture Notes in Computational Science and Engineering//,​ Springer Cham, 2019, [[https://​doi.org/​10.1007/​978-3-319-96415-7_67|DOI:​ 10.1007/​978-3-319-96415-7_67]]
   * S. Weißer: BEM-based FEM. In: K. Hormann, N. Sukumar (Eds.), //​Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics//,​ CRC Press, October ​ 16, 2017, [[https://​www.crcpress.com/​Generalized-Barycentric-Coordinates-in-Computer-Graphics-and-Computational/​Hormann-Sukumar/​p/​book/​9781498763592|ISBN 9781498763592]]   * S. Weißer: BEM-based FEM. In: K. Hormann, N. Sukumar (Eds.), //​Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics//,​ CRC Press, October ​ 16, 2017, [[https://​www.crcpress.com/​Generalized-Barycentric-Coordinates-in-Computer-Graphics-and-Computational/​Hormann-Sukumar/​p/​book/​9781498763592|ISBN 9781498763592]]
   * S. Weißer: Residual based error estimate for higher order Trefftz-like trial functions on adaptively refined polygonal meshes. In: A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (Eds.), //Numerical Mathematics and Advanced Applications - ENUMATH 2013//, Vol. 103 of //Lecture Notes in Computational Science and Engineering//,​ pages 233-241, Springer International Publishing, 2015, [[http://​dx.doi.org/​10.1007/​978-3-319-10705-9_23|DOI:​ 10.1007/​978-3-319-10705-9_23]]   * S. Weißer: Residual based error estimate for higher order Trefftz-like trial functions on adaptively refined polygonal meshes. In: A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (Eds.), //Numerical Mathematics and Advanced Applications - ENUMATH 2013//, Vol. 103 of //Lecture Notes in Computational Science and Engineering//,​ pages 233-241, Springer International Publishing, 2015, [[http://​dx.doi.org/​10.1007/​978-3-319-10705-9_23|DOI:​ 10.1007/​978-3-319-10705-9_23]]
ag/weisser_en.txt · Zuletzt geändert: 2019/01/13 17:35 von agrja
Attribution-NonCommercial-NoDerivatives 4.0 International
Powered by PHP Driven by DokuWiki