Universität des Saarlandes
FR Mathematik
Arbeitsgruppe Prof. S. Rjasanow

Institut für angewandte Mathematik

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen gezeigt.

Link zu dieser Vergleichsansicht

Both sides previous revision Previous revision
lehre:vorlesung:pdebvp1516 [2016/02/09 16:38]
agrja
lehre:vorlesung:pdebvp1516 [2016/09/15 11:51] (aktuell)
agrja
Zeile 15: Zeile 15:
  
 ^  Date ^  Assignments ​ ^ Due Date^ ^  Date ^  Assignments ​ ^ Due Date^
-| 23.10.15 ​ | {{:​lehre:​vorlesung:​pde15-16-blatt1.pdf|}} ​| 02.11.15 | +| 23.10.15 ​ | Sheet 1 | 02.11.15 | 
-|09.11.15| ​{{:​lehre:​vorlesung:​pde15-16-blatt2.pdf|}}|16.11.15| +|09.11.15| ​Sheet 2|16.11.15| 
-|16.11.15|{{:​lehre:​vorlesung:​pde15-16-blatt3.pdf|}} ​|30.11.15| +|16.11.15|Sheet 3 |30.11.15| 
-|30.11.15| ​{{:​lehre:​vorlesung:​pde15-16-blatt4.pdf|}}|14.12.15| +|30.11.15| ​Sheet 4|14.12.15| 
-|14.12.15|{{:​lehre:​vorlesung:​pde15-16-blatt5.pdf|}}|11.01.16| +|14.12.15|Sheet 5|11.01.16| 
-|19.01.16|{{:​lehre:​vorlesung:​pde15-16-blatt6.pdf|}} ​|25.01.16| +|19.01.16|Sheet 6 |25.01.16| 
-|01.02.16| ​{{:​lehre:​vorlesung:​pde15-16-blatt7.pdf|}}|08.02.16| +|01.02.16| ​Sheet 7|08.02.16| 
-|09.02.16|{{:​lehre:​vorlesung:​pde15-16-klausur.pdf|}} ​|17.04.16|+|09.02.16|Exam (Writing Part) |17.04.16|
  
  
Zeile 35: Zeile 35:
 The script in terms of transparencies will be available for download in the table below. The script in terms of transparencies will be available for download in the table below.
  
-^  Date ^ Topic  ^ Transparencies ​  +^  Date ^ Topic  ^   
-|  23.10.15 | Lecture 1. Introduction to PDEs. |{{:​lehre:​vorlesung:​pde15-16-lecture-1.pdf|}} ​+|  23.10.15 | Lecture 1. Introduction to PDEs. |  
-|26.10.15 | Lecture 2. Introduction to BVPs. |{{:​lehre:​vorlesung:​pde15-16-lecture-2.pdf|}} ​+|26.10.15 | Lecture 2. Introduction to BVPs. | 
-|30.10.15 | Lecture 3. Parabolic (Diffusion) Type \\ Problems. ​ Boundary Conditions for \\ Parabolic-Type Problems. ​|{{:​lehre:​vorlesung:​pde15-16-lecture-3.pdf|}} ​+|30.10.15 | Lecture 3. Parabolic (Diffusion) Type \\ Problems. ​ Boundary Conditions for \\ Parabolic-Type Problems. |  
-|02.11.15 | Lecture 4. Boundary Conditions \\ for Parabolic-Type Problems. \\ Derivation of the Heat Equation. ​| {{:​lehre:​vorlesung:​pde15-16-lecture-4.pdf|}}+|02.11.15 | Lecture 4. Boundary Conditions \\ for Parabolic-Type Problems. \\ Derivation of the Heat Equation. |  
-|09.11.15| Lecture 5. Separation of Variables ​| {{:​lehre:​vorlesung:​pde15-16-lecture-5.pdf|}}+|09.11.15| Lecture 5. Separation of Variables |  
-|13.11.15| Lecture 6. Transforming Nonhomogeneous BCs into Homogeneous Ones. More Complicatited Problems and Separation of Variables ​|{{:​lehre:​vorlesung:​pde15-16-lecture-6.pdf|}} ​+|13.11.15| Lecture 6. Transforming Nonhomogeneous BCs into Homogeneous Ones. More Complicatited Problems and Separation of Variables | 
-|16.11.15| Lecture 7. Eigenfunction Expansion Method. Sine and Cosine Integral Transforms ​|{{:​lehre:​vorlesung:​pde15-16-lecture-7.pdf|}} ​+|16.11.15| Lecture 7. Eigenfunction Expansion Method. Sine and Cosine Integral Transforms | 
-|23.11.15| Lecture 8. Exponential Fourier Transform. Laplace Transform ​| {{:​lehre:​vorlesung:​pde15-16-lecture-8.pdf|}}+|23.11.15| Lecture 8. Exponential Fourier Transform. Laplace Transform |  
-|30.11.15| Lecture 9. Solving IBVP with Maple (Fourier Transform) ​| {{:​lehre:​vorlesung:​pde15-16-lecture9.pdf|}}+|30.11.15| Lecture 9. Solving IBVP with Maple (Fourier Transform) |  
-|30.11.15| Lecture 10. Duhamel'​s Principle. Convection Term in Diffusion Problem ​|{{:​lehre:​vorlesung:​pde15-16-lecture-10.pdf|}}+|30.11.15| Lecture 10. Duhamel'​s Principle. Convection Term in Diffusion Problem | 
-|07.12.15| Lecture 11. Fundamental Solution of the Heat Equation|{{:​lehre:​vorlesung:​pde15-16-lecture-11.pdf|}}+|07.12.15| Lecture 11. Fundamental Solution of the Heat Equation| 
-|11.12.15| Lecture 12. Properties of Solutions of the Heat Equation. The One-Dimensional Wave Equation ​|{{:​lehre:​vorlesung:​pde15-16-lecture-12.pdf|}} ​|  +|11.12.15| Lecture 12. Properties of Solutions of the Heat Equation. The One-Dimensional Wave Equation | 
-|14.12.15| Lecture 13. The D'​Alembert Solution of the Wave Equation  ​| {{:​lehre:​vorlesung:​pde15-16-lecture-13.pdf|}}+|14.12.15| Lecture 13. The D'​Alembert Solution of the Wave Equation ​ |  
-|04.01.16| Lecture 14. Semi-Infinite String. Boundary Conditions Associated with the Wave Equation. ​|{{:​lehre:​vorlesung:​pde15-16-lecture-14.pdf|}}+|04.01.16| Lecture 14. Semi-Infinite String. Boundary Conditions Associated with the Wave Equation. | 
-|08.01.16| Lecture 15. The Finite Vibrating String (Standing Wave). The Vibrating Beam (Fourth-Order-PDE)|{{:​lehre:​vorlesung:​pde15-16-lecture-15.pdf|}}|  +|08.01.16| Lecture 15. The Finite Vibrating String (Standing Wave). The Vibrating Beam (Fourth-Order-PDE)| 
-|11.01.16| Lecture 16. The Vibrating Drumhead (Wave Equation in Polar Coordinates). Dimensionless Problem.|{{:​lehre:​vorlesung:​pde15-16-lecture-16.pdf|}} ​|  +|11.01.16| Lecture 16. The Vibrating Drumhead (Wave Equation in Polar Coordinates). Dimensionless Problem.| 
-|19.01.16| Lecture 17. The Wave Equations in Three and Two Dimensions (Free Space). ​|{{:​lehre:​vorlesung:​pde15-16-lecture-17.pdf|}}+|19.01.16| Lecture 17. The Wave Equations in Three and Two Dimensions (Free Space). | 
-|22.01.16| Lecture 18. Boundary Conditions Associated with the Laplace Equation. Interior Dirichlet Problem for a Circle. ​|{{:​lehre:​vorlesung:​pde15-16-lecture-18.pdf|}}+|22.01.16| Lecture 18. Boundary Conditions Associated with the Laplace Equation. Interior Dirichlet Problem for a Circle. | 
-|25.01.16| Lecture 19. The Dirichle Problem in an Annulus. Exterior Dirichlet Problem for a Circle. Spherical Harmonics. ​| {{:​lehre:​vorlesung:​pde15-16-lecture-19.pdf|}}+|25.01.16| Lecture 19. The Dirichle Problem in an Annulus. Exterior Dirichlet Problem for a Circle. Spherical Harmonics. |  
-|01.02.16| Lecture 20. Fundamental Solution of the Laplace Equation. Green'​s Functions for a Half-Space and for a Ball. Numerical Solutions (Elliptic Problems).| {{:​lehre:​vorlesung:​pde15-16-lecture-20.pdf|}}+|01.02.16| Lecture 20. Fundamental Solution of the Laplace Equation. Green'​s Functions for a Half-Space and for a Ball. Numerical Solutions (Elliptic Problems).|  
-|05.02.16|Lecture 21. An Explicit Finite-Difference Method. An Implicit Finite-Difference Method (Crank-Nicolson Method). Introduction in Monte-Carlo Method.|{{:​lehre:​vorlesung:​pde15-16-lecture-21.pdf|}}|+|05.02.16|Lecture 21. An Explicit Finite-Difference Method. An Implicit Finite-Difference Method (Crank-Nicolson Method). Introduction in Monte-Carlo Method.|
  
 ==Literature== ==Literature==
lehre/vorlesung/pdebvp1516.txt · Zuletzt geändert: 2016/09/15 11:51 von agrja
Attribution-NonCommercial-NoDerivatives 4.0 International
Powered by PHP Driven by DokuWiki