Calculus of Variations Summer Term 2016

Lecture 2

Universität des Saarlandes

29. April 2016

Purpose of Lesson:

- To discuss the generalizations of the E-L equations to case of n functions and to the ones of higher order derivatives.
- To discuss the special cases of the E-L equation.

§2. Remarks on the Euler-Lagrange equation

The Euler-Lagrange Equation:

If y minimizes
$$J[y] = \int_{a}^{b} F(x, y, y') dx$$
, then y must satisfy the equation
$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left[\frac{\partial F}{\partial y'} \right] = 0$$

History of Leonhard Euler and Joseph-Louis Lagrange

Leonhard Euler (1707-1783)

Joseph-Louis Lagrange (1736-1813)

 Euler developed Euler's Equations for fluids flow ans Euler's formula

$$e^{ix} = cosx + i sin x$$
.

In 1744 Euler published the first book on Calculus of Variations.

• Lagrange developed Lagrange Mulipliers, Lagrangian Mechanics, and the Method of Variations of Parameters.

- In 1766 Lagrange succeeded Euler as the director of Mathematics at the Prussian Academy of Sciences in Berlin.
- In letters to Euler between 1754 and 1756 Lagrange shared his observation of a connection between minimizing functionals and finding extrema of a function.
- Euler was so impressed with Lagrange's simplification of his earlier analysis it is rumored he refrained from submitting a paper covering the same topics to give Lagrange more time.

Generalization to *n* functions:

• Let $F(x, y_1, \ldots, y_n, y'_1, \ldots, y'_n)$ be a function with continuous first and second partial derivatives. Consider the problem of finding necessary conditions for finding the extremum of the following functional

$$J[y_1,\ldots,y_n]=\int_a^b F(x,y_1,\ldots,y_n,y_1',\ldots,y_n')dx\to \min$$

which depends continuously on n continuously differentiable functions $y_1(x), ..., y_n(x)$ satisfying boundary conditions

$$y_i(a) = A_i, \quad y_i(b) = B_i \quad \text{for} \quad i = 1, 2, ...n.$$

 One can derive that the necessary condition is a system of Euler-Lagrange Equations

$$\frac{\partial F}{\partial y_i} - \frac{d}{dx} \frac{\partial F}{\partial y_i'} = 0$$

4□ > 4□ > 4 = > 4 = > = 90

Generalization to Higher Order Derivatives:

• Let $F(x, y, y', y'', ..., y^{(n)})$ be a function with continuous first and second derivatives with respect to all arguments, and consider a functional of the form

$$J[y] = \int_{a}^{b} F(x, y, y', y'', ..., y^{(n)}) dx \rightarrow \min$$

where the admissible class will be

$$A = \{y(x) \in C^n[a, b]\}$$

$$y(a) = A_0, y'(a) = A_1, \dots, y^{(n-1)}(a) = A_{n-1}$$

$$y(b) = B_0, y'(b) = B_1, \dots, y^{(n-1)}(b) = B_{n-1}$$

The necessary condition is the Euler-Lagrange Equation

$$F_{y} - \frac{d}{dx}F_{y'} + \frac{d^{2}}{dx^{2}}F_{y''} - \dots + (-1)^{n}\frac{d^{n}}{dx^{n}}F_{y^{(n)}} = 0$$

Remark

For a functional of the form

$$J[y] = \int_{a}^{b} F(x, y, y') dx$$

the Euler-Lagrange equation is in general a second-order differential equation, but it may turn out that the curve for which the functional has its extremum is not twice differentiable.

Example 2.1

Consider the functional

$$J[y] = \int_{-1}^{1} y^{2} (2x - y')^{2} dx$$

where

$$y(-1) = 0,$$
 $y(1) = 1.$

• The minimum of J[y] equals zero and is achieved for the function

$$y = y(x) = \begin{cases} 0 & \text{for } -1 \leqslant x \leqslant 0, \\ x^2 & \text{for } 0 < x \leqslant 1, \end{cases}$$

which has no second derivative for x = 0.

- Nevertheless, y(x) satisfies the appropriate E-L equation.
- In fact, since in this case

$$F(x, y, y') = y^2(2x - y')^2$$

it follows that all the functions

$$F_y = 2y(2x - y')^2$$
, $F_{y'} = -2y^2(2x - y')$, $\frac{d}{dx}F_{y'}$

vanish identically for $-1 \leqslant x \leqslant 1$.

• Thus, despite of the fact that the E-L equation is of the second order and y''(x) does not exist everywhere in [-1,1], substitution of y(x) into E-L's equation converts it into an identity.

We now give conditions guaranteeing that a solution of the E-L equation has a second derivative:

Theorem 2.1

Suppose y = y(x) has a continuous first derivative and satisfy the E-L equation

$$F_y - \frac{d}{dx}F_{y'} = 0.$$

Then, if the function F(x, y, y') has continuous first and second derivatives with respect to all its arguments, y(x) has a continuous second derivative at all points (x, y) where

$$F_{v'v'}(x, y(x), y'(x)) \neq 0.$$

We now indicate some special cases where the Euler-Lagrange equation can be reduced to a first-order differential equation, or where its solution can be obtained by evaluating integrals.

1. Suppose the integrand does not depend on *y*, i.e., let the functional under consideration have the form

$$J[y] = \int_{a}^{b} F(x, y') dx,$$

where F does not contain y explicitly.

• In this case, the E-L equation becomes $\frac{d}{dx}F_{y'}=0$, which obviously has the first integral

$$F_{y'}=C, (2.1)$$

where C is a constant. This is a first-oder ODE which does not contain y. Solving (2.1) for y', we obtain an equation of the form

$$y'=f(x,C)$$

2. If the integrand does not depend on x, i.e., if

$$J[y] = \int_{a}^{b} F(y, y') dx,$$

then

$$F_y - \frac{d}{dx}F_{y'} = F_y - F_{y'y}y' - F_{y'y'}y''.$$
 (2.2)

Multiplying (2.2) by y', we obtain

$$F_y y' - F_{y'y} y'^2 - F_{y'y'} y' y'' = \frac{d}{dx} (F - y' F_{y'}).$$

Thus, in this case the E-L equation has the first integral

$$F - y'F_{y'} = C$$

where C is a constant.

