PD Dr. Darya Apushkinskaya

PDE and Boundary-Value Problems (Winter Term 2016/2017) Assignment H2 - Homework

Problem 2.1 (Formulation of IBVP - 4x2=8 Points)

- a) Suppose a laterally insulated metal rod of length L=1 has an initial temperature of $\sin(3\pi x)$ and has its left and right ends fixed at temperatures zero and $10^{\circ}C$. What would be the IBVP that describes this problem?
- b) Suppose a metal rod laterally insulated has an initial temperature of $20^{\circ}C$ but immediately thereafter has one end fixed at $50^{\circ}C$. The rest of the rod is immersed in a liquid solution of temperature $30^{\circ}C$. What would be the IBVP that describes this problem?

Problem 2.2 (Derivation of the diffusion equation - 6 Points)

Suppose u(x,t) measures the concentration of a substance in a moving stream (moving with velocity ν). Suppose the concentration u(x,t) changes both by diffusion and convection; derive the equation

$$u_t = \alpha^2 u_{xx} - \nu u_x$$

from the fact that at any instant time, the total mass of the material is not created or destroyed in the region $[x, x + \Delta x]$.

HINT: Write the conservation equation

Change of mass inside $[x, x + \delta x]$ = Change due to diffusion across the boundaries + Change due to the material being carried across the boundaries.

Problem 2.3 (Interpretation of IBVP - 6 Points)

What is your interpretation of the IBVP?

PDE:
$$u_t = \alpha^2 u_{xx}$$
, $0 < x < 1$, $0 < t < \infty$

BCs:
$$\begin{cases} u(0,t) = 0 \\ u_x(1,t) = 1 \end{cases}, \quad 0 < t < \infty$$

IC:
$$u(x,0) = \sin \pi x$$
, $0 \le x \le 1$

Can you draw rough sketches of the solution for different values of time? Will the solution come to a steady state; is this obvious?

Problem 2.4 (Units of quantities - 4 Points)

Substitute the units of each quantity into the equation

$$u_t = \alpha^2 u_{xx} - \nu u_x,$$

where ν has units of velocity to see that every term has the same units.

Deadline for submission: Wednesday, November 16, 10:15 am