4. Exercise Sheet to the Numerical Internship in Computerized Tomography

Shannon’s sampling theorem and the normal equation

Exercise 1: Shannon’s sampling theorem
For \(g \in L^1(\mathbb{R}) \) let
\[
 f(t) := \sum_{j=1}^{N} \alpha_j (g * \text{sinc})(\pi b_j(t - t_j))
\]
with \(t, t_j, \alpha_j, b_j, b \in \mathbb{R} \) and \(0 < b_j \leq b \) for \(j = 1, \ldots, N \).

(a) Compute \(\hat{f} \) and show that \(f \) is bandlimited.

(b) How do you choose \(h > 0 \) such that \(f \) can be reconstructed from the values \(f(h \cdot k), k \in \mathbb{Z} \)?
 What is the minimum size of the details contained in \(f \)?

Exercise 2: Normal equation
Let \(A : X \rightarrow Y \) be a continuous linear operator between Hilbert spaces \(X \) and \(Y \). Show that for \(x^* \in X \) and \(y \in Y \) the following statements are equivalent:

(a) \(\|Ax^* - y\| \leq \|Ax - y\| \) for all \(x \in X \),

(b) \(A^*Ax^* = A^*y \).

Hint: For “(a) \(\Rightarrow \) (b)” and arbitrary \(u \in X \) consider the mapping
\[
 f_u(t) := \|A(x^* + tu) - y\|^2, \quad t \in \mathbb{R}.
\]

Exercise 3: Solution set of the normal equation
Let \(A : X \rightarrow Y \) be a continuous linear operator between Hilbert spaces \(X \) and \(Y \). For \(y \in \mathcal{R}(A) \oplus \mathcal{R}(A)^\perp \) let
\[
 L(y) := \{x \in X : A^*Ax = A^*y\}
\]
be the solution set of the normal equation. Show:

(a) \(L(y) \) is closed and convex.

(b) For \(x^\dagger \in L(y) \) we have
\[
 \|x^\dagger\|_X \leq \|x\|_X \quad \text{for all} \quad x \in L \Leftrightarrow x^\dagger \in \mathcal{N}(A)^\perp.
\]