Priv.-Doz. Dr. rer. nat. habil. Aref Lakhal
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!
Qualifikation:
Mathematik
Habilitation/ Venia Legendi-Mathematik Universität des Saarlandes,
Naturwissenschaftlich-Teschnische Fakultät I-Mathematik und Informatik
Promotion an der Universität des Saarlandes.
Thema der Doktor-Thesis: “Resolution of Inverse Scattering Problems for the full three-dimensional Maxwell-Equations in Inhomogeneous Media using the Approximate Inverse”
Doktorvater: Prof. Dr. Dr. h. c. mult. Louis
M. Sc. Mathematik für die Industrie, TU-Kaiserslautern
Thema der Master-Thesis: “Solution of conservation laws using exponentially fitted finite elements”, Betreuung: Prof. Dr. W. Dörfler
Sprachen:
Arabisch, Deutsch, Englisch und Französisch
Forschungsinteressen:
Anwendungsorientiert
- Elektromagnetische und Akustische Rückstreuprobleme
- Bildgebende Verfahren in der Bio- und Medizintechnik und zerstörungsfreien Prüfung
- Techno- und Finanzmathematik
Methodenorientiert
- Theorie und Numerik Inverser Probleme
- Theorie und Numerik partieller differential und Integralgleichungen
- (Nichtlineare) Optimierung
Highlighted Publikationen:
· Selection in Inverse Problems Highlights of 2015 , ’KAIRUAIN-algorithmapplied Approximate Inverse and Sobolev estimates for the attenuated RadonTransform, with G. Rigaud, Inverse Problems 31 (2015) 105010
· Selection in Inverse Problems Highlights of 2013 , ’KAIRUAIN-algorithmapplied on electromagnetic imaging’, Inverse Problems 29 (2013) 095001.
· Selection in Inverse Problems Highlights of 2010 , ’A decoupling-based imaging method for inverse medium scattering for Maxwell’s equations’, ’Inverse Problems’ 26 (2010), 015007 (17pp)
· Selection in Inverse Problems Highlights of 20 08, ’Locating radiating sources for Maxwell’s equations using the approximate inverse’, with A K Louis, Inverse Problems, 24 (2008/04), 045020 (18pp) .
Jüngste Publikationen:
2016
- A direct method for nonlinear inverse problems, submitted
- Inverse Design of Anti-Reflection Coatings using the Nonlinear Approximate Inverse
Inverse Problems in Science and Engineering, Vol 24, Issue 6 (2016) 917-35
2015
- Approximate inverse and Sobolev estimates for the attenuated Radon transformInverse Problems 31 (2015) 105010 , with G. Rigaud
Paper Selected in "2015 Highlights for Inverse Problems" - Image and feature reconstruction for the attenuated Radon transform via circular harmonic decomposition of the kernel
- A Stable Numerical Algorithm for the Design of Anti-Reflection Coatings for Solar Cells
2013
- K AIRUAIN-algorithm applied on electromagnetic imaging, Inverse Problems 29 (2013) 095001, Paper Selected in "2013 Highlights for Inverse Problems"
- Non-Destructive Testing of Anti-Reflection Coatings for Solar Cells
Proceedings of the European Workshop on Renewable Energy Systems (EWRES), 2013