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ABSTRACT. In this paper we present a general approach to derive inversion
algorithms for tomographic applications, the so-called approximate inverse.
Three different techniques for calculating a reconstruction kernel are shown
and applied to invert the Radon transform, to compute approximations in the
limited angle problem and to solve the 3D cone beam reconstruction problem.
Reconstructions from real data in this case are presented.

1. Introduction

In this paper we present some principles in designing inversion algorithms in
tomography. We concentrate on linear problems arising in connection with the
Radon and the x-ray transform. In the original 2D x-ray CT problem the Radon
transform served as mathematical model. Here one integrates over lines and the
problem is to recover a function from its line integrals. The same holds in the 3D
x-ray case, but in 3D the Radon transform integrates over planes, in general over
N — 1 - dimensional hyper planes in RY. Hence here the so-called x-ray trans-
form is the mathematical model. Further differences are in the parametrization of
the lines. The 3D - Radon transform merely appears as tool to derive inversion
formula. Tn the early days of MRI ( magnetic resonance imaging ), at those days
called NMR, nuclear magnetic resonance, it served as a mathematical model, see
for example Marr-Chen-Lauterbur [MICL81], but then, due to the limitations of
computer power in thosc days one changed the measuring procedure and scanncd
the Fourier transform of the searched-for function in two dimcensions. Nowadays
the Radon transform reappeared, now in three and even four dimensions as math-
ematical model in EPRI ( electron parametric resonance imaging ) where spectral
- spatial information is the goal, see e.g. Kuppusamy et al [KCSWZ95].

The paper is organized as following. We start with a general principle for re-
construction information from mecasured data, the so-called approximate inverse,
see Louis [Lou96], Lounis-Maass [LM90]. The well-known inversion of the Radon
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transform is considered a model case for inversion. The singular value decomposi-
tion is then used to compute reconstruction kernels for the limited angle problem.
Finally we consider a 3D x-ray problem and present reconstructions from real data.

2. Approximate Inverse as a Tool for Deriving Inversion Algorithms

The integral operators appearing in medical imaging are typically compact op-
erators between suitable Hilbert spaces. The inverse operator of those compact
operators with infinite dimensional range are not continuous, which means that the
unavoidable data errors are amplified in the solution. Hence one has to be very
careful in designing inversion algorithms. They have to balance the demand for
highest possible accuracy and the necessary damping of the influence of the un-
avoidable data errors. From the theoretical point of view, exact inversion formulae
are nice, but they do not take care of data errors. The way out of this dilemma
is the use of approximate inversion formulas whose principles are explained in the
following.

For approximating the solution of

Af=g
we apply the method of approximate inverse, see Louis [Lou96]. The basic idea
works as follows: choose a so-called mollifier e, (z,y) which, for a fixed recon-
struction point z is a function of the variable y and which approximates the delta
distribution for the point x. The parameter v acts as regularization parameter.
Simply think in the case of one spatial variable x of

1
€y (.’IZ, y) = ZX[z—'y,x-I—’ﬂ (y)

where xgq denotes the characteristic function of 2. Then the mollifier fulfills
(2.1 [ertemiy=1
for all  and the function

1@ = [ fwe ey

converges for v — 0 to f. The larger the parameter ~ the larger is the interval
where the averaging takes place and hence the stronger is the smoothing. Now
solve for fixed reconstruction point x the auxiliary problem

(2.2) A (@) = ey (3, )
where e (z,-) is the chosen approximation to the delta distribution for the point z,
and put

f(z) = (f.ey(=,))
= ([, A, (z,) = (Af,94(2, ) = (9, ¥ (3,))
= Syg(x).
The operator Sy is called the approximate inverse and ), is the reconstruction
kernel. To be precise it is the approximate inverse for approximating the solution
f of Af = g. If we choose instead of e, fulfilling (2.1) a wavelet, then f, can be

interpreted as a wavelet transform of f. Wavelet transforms are known to approx-
imate in a certain sense derivatives of the transformed function f, see [LMR9T].
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Hence this is a possibility to find jumps in f as used in contour reconstructions, see
[LM93].

The advantage of this method is that ., can be pre-computed independently of
the data. Furthermore, invariances and symmetries of the operator A* can directly
be transformed into corresponding properties of S, as the following consideration
shows, see Louis [Lou96]. Let T} and T3 be two operators intertwining with A*

AT, =T A",
If we choose a standard mollifier E and solve A*¥ = E then the solution of Eq.
(2.2) for the special mollifier e., = T1 E is given as

by = To0.

As an example we mention, that if A* is translation invariant; i.e., T} f(z) =
T>f(z) = f(z — a), then also the reconstruction kernel is translation invariant.

Sometimes it is easier to cheque these conditions for A itself. Using ATy = T5 A
we get the above relations by using the adjoint operators.

This method is presented in [Lou99] as general regularization scheme to solve
inverse problems. Generalizations are also given. The application to vector fields
is derived by Schuster [Sch00].

If the auxiliary problem is not solvable then its minimum norm solution leads to
the minimum norm solution of the original problem.

There are several possibilities for solving (2.2). Besides the straight forward ap-
proach we can easily solve this equation if the inverse operator is of the form

ATl =4A*B.
The solution of (2.2) is then given as
(2.3) Y, = BAe,
as the following equations show
A*p, =e, = A" Ae, = A*BAe,.

The next situation we consider is that a singular system of the operator is known.
Assume the operator being compact as mapping from a Hilbert space X into a
Hilbert space Y. Then the operator has a complete singular system consisting of
normalized functions v, € X, u, € Y and nonnegative numbers o, such that

Avy, = optuy , AUy = OpUy, -

Information on singular value decomposition in connection with the Radon trans-
form can be found in [Lou89], [Nat86]. The solution of (2.2) can then be calculated
as

(e o]

(24) Yy(2,y) = D on ey (@), vn)un (y)

n=>0

Finally we want to mention the case, where the inverse is again given as

A= A*B
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and we want to save the structure of this formula using the operator A*. Here

we start by first smoothing the data with a smoothing operator A, and then we

invert, see [Lou99] Theorems 6 and 7. The approximate inverse has then the form
S, =A"'M,.

We pre-compute a reconstruction kernel in the following way. Let w,(y,-) be an
approximation of the delta distribution on the data for the point y. Then we put

(2.5) Py (y, ) = Bwy(y,")
and compute
f'y = A*B'yg
with
Byg(y) = (9, 8+(y,")) -

3. Inversion of the Radon Transform

We apply the above approach to derive inversion algorithms for the Radon
transform. The Radon transform in RY is defined as

Rf(G,s):/f(m)(s(s—xTO)dm

SN—l

for unit vectors 8 € and s € R. Its inverse is

(3.1) R!=cyR 1N

where R* is the adjoint operator from Ly to Lo, also called the backprojection,
defined as

Ro(w) = [ al0.570)a0,

I* is the Riesz potential defined via the Fourier transform as
(Ig)(§) = &I 9(£),
acting on the sccond variable of Rf and the constant
1 _
CN = 5(27’(‘)1 N .

see e.g. [Nat86]. We start with a mollifier e,(z,-) for the reconstruction point z
and get

R*@Z"y(xv )= 6’7('7;7 )
enR IV Re, (z,-)

leading to
P (250,8) = enI' "V Re, (230, 5) .

The Radon transform for fixed 8 is translational invariant; i.e., if we denote by

Ryf(s) =Rf(0,s), then
RoT:f =TS “Rof

with the shift operators T{ f(z) = f(z — a) and Tig(s) = g(s — t). If we chose a
mollifier €, supported in the unit ball centred around 0 that is shifted to = as
x y)

ev(x,y) = Q_Név( 9
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then also e, is supported in the unit ball and the reconstruction kernel fulfills
1- s—z'0
w'y(il'; 0, S) = 51/)7(97 T)
as follows from the general theory in [Lou96] and as was used for the 2D case in
[LS96].
Furthermore, the Radon transform is invariant under rotations; i.e.,
RTY =TYR

for the rotation TV f(z) = f(Ux) with unitary U and T3 (8, s) = g(U#, s). If the
mollifier is invariant under rotation; i.e.,

&y(z) = & ()
then the reconstruction kernel is independent of # leading to the following observa-
tion.

THEOREM 3.1. Let the mollifier e, (z,y) be of the form

_N_

ey(@,y) =277 & ([lz — yl/2)
then the reconstruction kernel is a function only of the variable s and the algorithms
is of filtered backprojection type

(3.2) £,(2) :/SH/R%(Ja—s)Rf(a,s)dsde.

We described here the approach mentioned in (2.3). First references to this
technique can be found in the work of Griinbaum [DG81] and Solmon, [HS88].

4. The Filtered Backprojection for the Radon Transform in 2 and 3
Dimensions

In the following we describe the derivation of the filtered backprojection, see
Theorem 3.1, for two and three dimensions. As seen in Formula (3.1) the inverse
operator of the Radon transform in RY has the representation

R !'=R*B
with

B = chl—N‘
Hence we can apply Formula (2.2) for deriving reconstruction kernels. They then
can bc represented as

(4.1) ¥y = cnI' "V Re,.
As mollifier we choose a translational and rotational invariant function

&y(z,y) = ey (lz — yl)
whose Radon transform then is a function of the variable s only. Taking the Fourier
transform of Equation (4.1) we get

e

do(0) = en(I'"N(Re,))(o)

(2m) =M 2o| Ve, (o),

1

2

where in the last step we have used the projection theorem
f(o) = 2m) " TNPRy [ (o).
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So, we can proceed in the following two ways. Either we prescribe the mollifier e,
where the Fourier transform is then computed to

éy(0) = al—N/Z/ ey (8)8NV/ 2 T /o 1 (s0)ds
0
where J,, denotes the Bessel function of order v. On the other hand we prescribe
&,(0) = (2m) V2P, (o)
with a suitably chosen filter F., leading to

dl0) = 520> No] V1B o).

If F, is the ideal low-pass; i.e., F,(c) = 1 for |o| < v and 0 otherwise, then the
mollifier is easily computed as

_ In2(vllz —l)
e'y(%y) = (27T) N/2’YN (:|/|2x—y||)N/2 .

In the two-dimensional case the calculation of ¢ leads to the so called RAM-LAK
(ilter, which has the disadvantage to produce ringing artefacts due to the disconti-
nuity in the Fourier domain.

More popular for 2D is the filter

sincg o] <,

rEo =1 5% N

From this we compute the kernel ., by inverse Fourier transform to get for v = = /h
where h is the stepsize on the detector; i.e., h = 1/q if we use 2¢g + 1 points on the
interval [-1,1] and s = s, =¢h, £ = —¢q,...,q
2
_r 1
0= m g

known as Shepp - Logan kernel.

The algorithm of filtered backprojection is a stable discretization of the above de-
scribed method using the composite trapezoidal rule for computing the discrete
convolution. Instead of calculating the convolution for all points 8Tz the convolu-
tion is evaluated for equidistant points £k and then a linear interpolation is applied.
Nearest neighbour interpolation is not sufficiently accurate, higher order interpo-
lation is not bringing any improvement because the interpolated functions are not
smooth enough. Then the composite trapezoidal rule is used for approximating the
backprojection. Here one integrates a periodic function, hence, as shown with the
Euler- Maclaurin summation formula, this formula is highly accurate. The filtered
backprojection then consists of two steps. Let the data Rf(6,s) be given for the
directions 6; = (cosgj,sing;), ¢; = (i —1)/p, = 1,..., p and the values s, = kh,
h=1/qand k = —q,...,q.

Step 1: For j=1,...,p, evaluate the discrete convolutions

q
(4.2) vie=h Y Uy(se— sk)RF(85,5%), £=—q,-ns .

k=—q
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Step 2: For each reconstruction point & compute the discrete backprojection

21 &
(4.3) flz) = > D (1 v+ e
j=1
where, for each z and 7, £ and n are determined by
s:ﬂ;—x,fgs/h<€+1,n:s/h—€

see e.g. [Nat86].

In the three - dimensional case we can use the fact, that the operator 12 is

local,
2

g

—92 _

I7%g(8,s) = @9(978)

If we want to keep this local structure in the discretization we choosc
F.(0) = 2(1 — cos(ho))/(ho)?

leading to

(4.4) Py(s) = (65 =200 +0-) (s)
Hence, the application of this reconstruction kernel is nothing but the central differ-
ence quotient for approximating the second derivative. The corresponding mollifier

then is - )
_f @m)hymt , forly| < b,
ey(y) = { 0 , otherwise,
see [Lou83]. The algorithm has the same structure as mentioned above for the 2D
case.

In order to get reconstruction formulas for the fan beam geometry coordinate trans-
forms can be used, the structure of the algorithms does not change.

5. The Reconstruction Kernel for the Limited Angle Transform

As an example for the use of the singular value decomposition for comput-
ing the reconstruction kernel we consider the so-called limited angle problem. For
practical applications see the paper of Quinto, [Qui086] in this volume. Singular
valuc decompositions are known for scveral of these integral transforms appearing
in tomography. For the classical 2D Radon transform the early result of Cormack
[Cor64]| can be interpreted as singular value decomposition. For the Radon trans-
form in arbitrary dimensions it is given in [Lou84]|, for the x-ray transform in
arbitrary dimensions and the parallel geometry it was derived by Maass, [Maa87].
Singular valuc decompositions for the fan-beam geometry are simple modifications.
Tn the 2D case it has been used by Louis-Rieder [LR89] for deriving algorithms for
region-of-interest tomography. Quinto [Qui88] used a singular value decomposition
for developing algorithms for the exterior problem.

The singular value decomposition can also be used to answer the question of
resolution and the practically invisible objects. An approach which gives more
insight is based on wavefront sets, see Quinto [Qui93]. Tn the following we want to
use the svd for computing a reconstruction kernel, rather than using them directly
on the data to compute approximations in the missing range as done in Louis
[Lou80].
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We first describe the limited angle problem and formulate its singular value
decomposition, originally presented in Louis [Lou86], now using the notion intro-
duced by Slepian [Sle78].

We consider the parallel geometry of x-ray CT where the mathematical model is
the Radon transform. Let f be an Ly-function of compact support in the unit disk
Q C R?, after a possible rescaling. Denote by 8 € S' the unit vector

6 = 6(p) = (cosg,sinp) "
and by 6+ = (o + 7/2) = (—sing,cosp) T the vector orthogonal to 6.
The Radon transform is defined as

Rf(4,s) = sz(;v)&(s—xTO)dm

= / f(s64tot)dt.
R
We assume R f(8,-) to be given for all § with

0 € Ss:=1{0(p): lo| < YU {B(p) : lp — 7| < $} C S

with 0 < ¢ < 7. Note that in [Lou86] this was the missing range, hence the
results change accordingly. Due to the symmetry of the Radon transform it suffices
to know the data on one of the subscts of Sy.

With the truncated cylinder
Z¢ = S¢ X [—]., 1]
and the weight
w(s) = (1— s*)/?
we consider
R¢ : LQ(Q) — Lg(Zd,,w_l)

where the scalar product in the latter space is defined as

[ 1
< f,9 >p1= /_@/1w‘l(S)f(so,s)g(%S)dsdsO-

In a first step we present the singular value decomposition of the limited angle
transform Rg. Note that R,/ = R.
We make use of the following notion, introduced by Slepian [Sle78].
Let the N X N matrix p(N, ¢/7) be given as

sin2¢(m — n)

= ,=0,...,N—1.
p(N7 ¢/7r)mn ﬂ_(m_n) > m?’n 07 ’

with the diagonal clements 2¢ /7.

Let Ap(N,¢/m), k=0,...,N —1 be its eigenvalues and the
vB(N,¢/m)eRY, k=0,...,N—1

its with respect to the Euclidean norm normalized eigenvectors. They are sections
of the discrete prolate spheroidal sequences and are related to the discrete spheroidal
wave functions ui (N, /7, /) via
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N—1
0.1 ug(N, Wi f) = ¢ V(N W)t (V-1=20) f - p
(5.1) ( n
n=0

where

{1 , k even,
EL =

1, k odd,
see [SleT8, Formula (26)].

Finally we denote by U, the Chebychev polynomials of the sccond kind and by

1/2
Qmu(r) = (20m+1)) "1 B, (207 - 1)

the normalized Zernike polynomials with P,ga’ﬁ ) the Jacobi polynomials.

THEOREM 5.1. Let Ry : Lo(Q) = Lo(Zy, w™L). Then (f2,,92,;0%,), m >0,
0 <l <m with

Foa(ro(@) = (2m) 7123 S0 (m+ 1, ¢/7) Qua, oy (r) €377

pn=0
Gorl8(0),5) = = () Unn(s) e wlm + 1,6/, /) Mu(m + 1, /)
Ule

= 2(= TN+ 1,(]5/7r)>1/2

form a complete singular system for the limited angle problem.



10 ALFRED K. LOUIS

PRrOOF. The proof follows [Lou86] and is sketched here. Using the singular
value decomposition for the full range case, see e.g. [Lou84], [Nat86]

fml (7'0.)(79)) = (27T)_1/2 Qm,|2[—m] (,’,) et (2l—m) 9 ,
1
gmi(0(9),5) = —w(s)Up(s)e'@=™%,
T
e 1/2
Oml = O, = 2<m+1>

it remains to orthogonalize on the truncated cylinder.
The ff;l are a linear combination of the f,.;,

For=">vu(O)(m+1,9/7) fm
pu=0

and hence they are complete on L2 () duc to the completeness and orthogonality
of the functions f,,, and the orthonormality of the vectors v(© (m + 1,® /pi), £ =
1,...,m. Then we expand R*Rff;l in terms of these functions. The Fourier coef-
ficients are

ek = (RERofo, 0 Lo
= (Rofl RSO La(zsm-1)-

USing Rfml = Omgmi We get

4 1 i
Cnk = CEDCE /w(s) U (8) Up(s) ds x

=(7/2)0mn

x 3 S oD (m+1,¢/m) vl (n+1,6/r) / et GrmmAn=2)¢ g

u=0v=0 P

=2mp(m+1,/7) 10

4dn
— 0 T (k)
= +15mnv (m+1,¢/7)" pm+1,¢/m) v (m+1,¢/7)

4
— miil Ai(m +1,¢/7) 6mn St

which means that
X 47
R¢R¢fil T+l M(m+1,¢/7) fil = (021)2 fil :
Using Ry frmi = aﬁllg;il and relation (5.1) complete the proof.
|

The eigenvalues A\;(m + 1, ¢/m) show the well known behaviour that they are
closc to 1, if I < (m + 1)¢/m and the rest is closc to zero, if they are ordered from
large to small. Their exponential decay, see [Sle78], means that the problem is
severely ill — posed . As a consequence some of the components of the solution,
namely those belonging to small singular values, are practically invisible. For a
more geometrical interpretation see Qunito’s approach with the wave front sets,
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[Qui06]. This also affects the computation of the reconstruction kernel, see the
discussion after Theoremb5.2.

The aim is now to represent an approximation f, of the equation Ry f = g in
the form

f'y(x) = <971;$>L2(Z,w—1) :

To this end we solve, according to (2.4)
RS = ey

for a prescribed mollifier resulting in f, = (f, e4).
The limited angle transform intertwines with two shift operators, namely

TEf(y) = (=~ y)
and
Tig(w,s) = g(w.s —t)
as
.
RsT® =TF “Rg.

This means that, if we choosc a shift invariant mollifier e, (z,y) =TT E,(y) with a
standard mollifier E,, then the reconstruction kernel ¢, (z;w, s) is of the form

Yy (25w, 8) = Py(w, s — asz) ,

see [Lou96).

This means that it suffices to compute the reconstruction kernel for one point,
preferably = = 0, and than shift the kernel.

Using the singular value decomposition of the limited angle transform we can rep-
resent the minimum norm solution of

RZTZJW =E,
as
[o o] m 1
(5.2) Z Y B S pa(e) G 5) -
m=01=0 ml
Using polar coordinates the scalar products are computed as
By Lodiaey = @073 o m+1,6/m) x
1©=0
1 27
X /TQm7|2#_m] (r)/ E (rw(v))e’ Cu=m)® g9 dr .
0 0

If the mollifier is radially symmetric, i.e.

E,(y) = Ey(Jy]),
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then we get
By fod ety = @m)72 3 vl (m+1,6/m) x
pu=0

1
X /T’Qm7|2#_m](7') Ev(r) dr 276, m /2
’ 1
=m0+ 1,4/m) / r Qmo(r) B, (r) dr
0

for m even, and 0 otherwise.
Using the symmetry relation of the discrete spheroidal sequence

!
o, W) = (=)' i (W),
see [Sle78, Formula (23)], we obscrve

7(7?/2(7”"‘ 1,¢/7) =0 forlodd.

This means that both m and / have to be even.
From (5.2) then follows

Uy (w,

Mg

= 1
Z o E’Y’ fml>L2 gml(w S)
=0 o-ml

en leven

eII

me

Denoting by
1

Oy 1= /ero(r) E.(r)dr
0
and using that gil contains the factor w(s), the scalar product in Lo(Zy, w™!) we
can state the result avoiding weighted scalar products in the following way.

THEOREM 5.2. The reconstruction kernel ¢$ for the limited angle problem has
the form

oo

-

(2m+1) 1/2 U (8) G2,y X

) =

N

7I' m=0

3

x> ugi(2m + 1,8/, /7)) dar(2m + 1, 6/m)

1=0
leading to the representation of the solution of Ry f =g

as
/¢
—¢—

The numerical problem in the evaluation of ¢$ is based on the decay of the
eigenvalues \j(m—+1, ¢/7). The series has to be truncated early enough not to pro-
duce numerical instabilities. But this restricts the resolution in the reconstruction
too much, which we avoid by computing the reconstruction kernel as a correction

s — 2 w)g(w(p),s)dsdp.

»—A\,_.
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term for the full range kernel.
Using

’(/J Z 2m+1 1/2U2m( )Oégm),y,

7

we get the following result:

THEOREM 5.3. The reconstruction kernel for the limited angle problem has the
following, numerically more attractive, form:

B0 (w,5) = () + 92 (0,5)
with

B (w,s) = MZ (2m 4+ 1)12 U () @tz X

(3 a2 + 1,6/ /) da(2m + 1,8m) " — 1).

1=0
REMARK 5.4. The following symmetry conditions hold

1/154;(“1(—80)» S) = %Zfif(w(@)a S) 7¢$7C(W(“¢)7 S) = ¢$7C(w(¢)a S) s
1/1?,)(00, _5) = z/sz(w, S) 7¢$’c(wa _5) = ¢$7C(Wa S) .

For practical computations we cut-off the representation of the correction term
in the above theorem.

6. Inversion Formula for the 3D Cone Beam Transform

In the following we consider the X-ray reconstruction problem in three dimen-
sions when the data is measured by firing an X-ray tube emitting rays to a 2D
detector. The movement of the combination source - detector determines the dif-
ferent scanning geometries. In many real - world applications the source is moved
on a circle around the object. From a mathematical point of view this has the
disadvantage that the data are incomplete, the condition of Tuy-Kirillov is not ful-
filled. This condition says, that essentially the data are complete for the three -
dimensional Radon transform. All planes through a point 2 have to cut the scan-
ning curve I'. We base our considerations on the assumptions that this condition
is fulfilled, the reconstruction from rcal data nevertheless is then from the above
described circular scanning geometry, because other data is not available to us so
far.

A first theoretical presentation of the reconstruction kernel was given by Finch
[Fin87], invariances were then used in the group of the author to speed-up the
computation time considerably, so that real data could be handled, see [Lou03].
See also the often used algorithm from Feldkamp et al. [FDK84| and the contribu-
tion of Defrise and Clack [DC94]. The approach of Katsevich [Kat02] differs from
our approach that he avoids the Crofton symbol by restricting the backprojection
to a range dependent on the reconstruction point z.

The presentation follows Louis [Lou04].
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The mathematical model here is the so-called X-ray transform, where we denote
with a € T the source position, where I' C R? is a curve, # € 52 is the direction of
the ray:

Df(a,0) = /Ooo fla+th)dt

The adjoint operator of D as mapping from Lo(R3) — Lo(T x 5?) is given as

Dy(e) = [ o al =g (0, 222 ) do
r z - al

Most attempts to find inversion formulae are based on a relation between X-ray
transform and the 3D Radon transform, the so-called Formula of Grangeat, first
published in Grangeat’s PhD thesis [Gr87], see also [Gr91] :

ﬁRf(w,aTw) = — [ Df(a,0)8 (0" w)dd.
dS Sz

PROOF. We copy the proof from [NWO01] ). Tt consists of the following two
steps. 1) [ Rf (w, s)¢(s)ds = [gs f(@)¢(zTw)dz
ii) fg:Df(a,0)R(0)d8 = [is f(:v)h(ﬁ)kv —a|%dx
Putting ¥(s) = §'(s — a'w) and use h(8) = §'(#Tw) and the fact that § is homo-
geneous of degree —2 in R® completes the proof. O

We note the following rules for §:
i)
Y(a w)d' (0T w)dw = —aTH/ V' (0" w)dw

52 S2netL

ii)
1T _ 6
. P(w)d' (6 w)dw = /S?r]@i- —60¢(w)dw

Starting point is now the inversion formula for the 3D Radon transform

1 d? T

(6.1) flz)= "7 @Rf(w,x w)dw

rewritten as
1 9 ! T
f(z) = 872 Jo [ ng(w, $)6' (s —x' w)dsdw

We assume in the following that the Tuy-Kirillov condition is fulfilled. Then we
can change the variables as: s = a'w, n is the Crofton symbol; i.e., the number of
source points @ € T' such that a'w =2z w, m = 1/n and get

f(z) = 8%/52 /];(Rf)'(w,a—rw)él((a—x)Tw)|a'Tw|m(w,aTw)dadw

— —%// Df(a,0)8' (8T w)dod ((a — z) Tw)|a'T w|m(w,a’ w)dadw
8w szJrJs2

(—a)"

|z —a

w)

- —%/W—GI‘Q/ Df(a,0)5' (07 w)dos'(
87 Jr 52 Jg2

x|a'Tw|m(w,a’ w)dadw
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where we again used that §’ is homogeneous of degree —2. We now introduce the
following operators

(62) Tugw) = [ 9507 w)as
52
and we use T7 acting on the second variable as
T ,u9(w) = Thg(a,w) .
We also use the multiplication operator
(6.3) My h(w) = |d' Tw|m(w,a w)h(w) .

and state the following result.

THEOREM 6.1. Let the condition of Tuy-Kirillov be fulfilled. Then the inversion
formula for the cone beam transform is given as

1
(6.4) f= *@D*TlMF,aﬂDf

with the adjoint operator D* of the cone beamn transform and Ty and Mr 4 as defined
above.

Note that the operators D* and M depend on the scanning curve T'.

This form allows for computing reconstruction kernels. To this end we have to solve
the equation

D™y = ey
in order to write the solution of Df = g as
f(z) =<g,9¢,(z,") > .

In the case of exact inversion formula e, is the delta distribution, in the case of the
approximate inversion formula it is an approximation of this distribution, see the
method of approximate inverse. Using that D~ ! = fs—;lrzD*TlMp’aTl we get

1
D*y=§ =——D*T1Mr ,1Dé
872 ’
and hence
1
(65) w — 77T1M1"7aT1D(5

872

We can explicitly give the form of the operators 77 and 15 = MTy. The index at
V indicates the variable with respect to which the differentiation is performed.

Tigla,w) = /Szg(a,ﬂ)é'(HTw)dH

= ~wT/ Vag(a,8)do
S2Nw-+
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and
Ty Mr o h(a, o) = 8 (wTa)la’ T wim(w,a’w)h(a,w)dw
SZ

= —a'Ta/ sign(a’T w)m(w,a’ w)h(a,w)dw
S2nat

~aT/ la' T a|Vim(w,a’ w)h(a,w)dw

52Nat

—aTa/ la'Tw|Vam(a,a w)h(a,w)dw
S2Nat

—/ |a'Tw|m(w,aTw)ih(a,w)dw
S2Aal Oa

Note that the function m is piecewise constant, the derivatives are then Delta -
distributions at the discontinuitics with factor equal to the height of the jump; i.e.,
1/2.

Depending on the scanning curve T invariances have to be used. For the circu-
lar scanning geometry this leads to similar results as mentioned in [Lou03]. In
the following we present a reconstruction from data provided by the Fraunhofer
Tnstitut, for Nondestructive Testing (IzfP) in Saarbriicken. The detector size was
(204.8mm)? with 5122 pixels and 400 source positions on a circle around the ob-
ject. The second data set was provided by the Deusches Krebsforschungszentrum
(DKFZ) Heidelberg, with the same number of data, namely 10.4 million. The
mollifier used is

exl) = (2m) 72 exo (5[],

<2
enm D
B

FIGURE 2. Reconstruction of a perforator.
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