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I mage Reconstruction and Image Analysisin
Tomography:
Fan Beam and 3D Cone Beam

Alfred K. Louis and Thomas Weber

ABSTRACT. The result of tomographic examination is a series of
images of the region under consideration. On these recmtistns a
diagnosis is based. Automatic evaluations of these imagesther
common in nondestructive testing, in medical analysisray par-
tially be the case in the future. Typically the two tasks aeated
separately. This paper describes an approach where thetéps, s
the image reconstruction and the image analysis, are caubirhis
leads to new strategies how to develop fast algorithms. /Asnex
ple we consider the standard problem in X-ray tomographyasnd
edge detection. We calculate a special reconstructiorekeand we
present numerical examples.

1. Introduction

The filtered backprojection is the standard reconstruatiethod for
2D X—ray tomography. Already GrunbaurB][observed that this al-
gorithm determines a smoothed version of the searchedsfotian. In
different fields the calculation of such smoothed versidnthe solution
is the starting point for developing algorithms, see el.2[, 16]. A
first unified approach was given i29], which then was generalized in
[24] for the application to linear and also to some nonlineabf@ms. In
[28] this so-called approximate inverse was further genezdlip directly
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compute linear functionals of the solution. The calculatid derivatives
for functions of one variable was already mentioned by Eakhd9],
and also, including numerical experiments, 24][

In this paper we study the problem of determinibg where f is the
solution of the linear equatioA f = ¢. The standard case in reconstruc-
tion problems is that the operatdyr is the identity, hence we calculate
the solution itself. If we include in the solution step thealesation of
the reconstruction, then we may enhance this task by incatipg parts
of the evaluation in the reconstruction. An example is edgeation
where smoothed derivatives of the images are calculatethendurther
processed. In that caiemay be a differential operator, which increases
the degree of the ill-posedness of the whole problem. Otbssipilities
are the direct calculation of wavelet coefficients of thausoh, as orig-
inally described in Sec. 3.4.3 ir8]]. Applications to tomography are
givenin [3, 37].

Often, the two procedures are executed independently.e lintage
is itself the result of a reconstruction, for example in ncatimaging,
one can envisage, that the information from the reconstrustep could
be included into the analysis step, which then should giteebeesults.

As example, for a given pictur¢g we compute partial derivatives
L, = %, hence the result can be written as

Ligf = fxp = WaLif (1.1)
for a smoothing operatdiV/s. If the imagef is a reconstruction, say
the solution of
Af=g (1.2)
we can write the solution, when filtering is considered, as

fHy=Ef= EVATQ (1.3)

where AT denotes the generalized inversedf Combining these two
steps we get

frgy = WsLiE,Alg (1.4)
= W9 (1.5)
There arise several questions

¢ is there an optimal relation between the two smoothing epera
torsWg andE, ?

e how to choose the parametet@and~y ?

e can this operatoW, 3., be efficiently evaluated ?
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Concerning the last question we know that for the reconstnustep
a convolution operatoF, leads to the filtered backprojection method.
Hence we are looking for similar structures in the operakoy.

After describing the general approach of developing allgors for
calculatingLLf in Section 2 we present the special case of fan - beam
tomography in Section 3 for the case whérgis the differentiation of
first order in thek - th coordinate direction. We then consider the standard
reconstruction problem; i.dL the identity, for cone - beam tomography
for a circular scanning geometry.

2. Approximate Inverse for Combining Reconstruction and
Analysis

This section is based o2§] where we generalize the method of the
approximate inverse as analyzed 4]l Let A : X — Y be a linear
operator between the Hilbert spacésandY andL : X — Z be alinear
operator between the Hilbert spacéandZ. As usual we first formulate
the reconstruction part

Af=g. (2.1)

Next an operatiorl. on the so computed solutighfor the image analysis
is performed

Lf=LAlg, (2.2)

where A denotes the generalized inverse/f Now we adapt the con-
cept of approximate inverse, first introduced 29]f where we now com-
pute instead of.f an approximation

(Lf)y = (Lfseq)

with a prescribed mollifiee,. We formulate in the following theorem the
principle of the reconstruction method.

THEOREM 2.1. Lete, be a suitably chosen mollifier ang, be the
solution of the auxiliary problem

A*T;Z)“/(x> ) = L*e’y(l‘> ) : (23)

Then the smoothed version of the image analysis operatialirastly
computed from the given dateas

(Lf)y(2) = (g, ¥y (,-)) (2.4)

ProOOF We write the smoothed version of the image analysis part as

(Lf)y(x) = (Lf,ey(,-))
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Now we use the adjoint operator éfand the auxiliary problem to con-
tinue

(Lf)y(x) = (fiLey(z,"))
= <fa A*wv(‘w’ )>
= (9,9y(x,"))

where in the last step we have used the original equatifn- g. d
DEFINITION 2.2. The operatof., : Y — Z defined as

Sy9(x) = (g, ¥y(x,+)) (2.5)
is called theapproximate inversef A to compute an approximation of
L f andz,, is called thereconstruction kernel

If we know the reconstruction kernel for computirfg then we can
solve the above problem for computihgf in the following way.

THEOREM2.3. Letqu7 be the sufficiently smooth reconstruction ker-
nel for computingf, then the reconstruction kernel, for approximating
L f can be determined as

¥y = LWgib, (2.6)
where LW acts on the first variable af,.

PROOF. The approximation of.f is here computed as the applica-
tion of L on f,(x) = (g,%(x,-)). Interchanging the application df
and the integration, for sufficiently smoogh,, gives the result. O

It is shown in P8] that S,, is a regularization for computing f if the
smoothness of,, is adapted to the smoothing df and the inverse of.
in the following sense

lim S

E—»O,g5—>g 7(5795)96 = LATg (27)

if ¢ is in the range oL AT.

The computational efficiency of the approximate inversevingde-
pends on the use of invariances. We consider again the rtegctitn
problem in tomography. If we chose for each reconstructiomtpz
a special mollifier, namely., (x, -), then the reconstruction kernel also
depends orx, the number of values to store is then the number of re-
construction points times the number of data. If we use ianaes, for
example translation and rotational invariances of the Radansform
and we use these invariances to produce the mollifier we chrceethis
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number of values to compute and store to just the number ofsvjmer
direction. The mathematical basis for this can be foun@4#.[Here we
cite the corresponding result for the combination of retmietion and
image analysis from2B].

THEOREM 2.4. LetA : X — Y andL : X — Z be the two
operators as above. Let

T : Z—->Z
T, : X —>X
T3 : Y =Y
be linear operators with
LTy = ThL* (2.8)
TobA* = A'Ty (2.9)
and let¥ ., be the solution of the auxiliary problem for a general malifi
E
! AV, =L"E, . (2.10)
Then the solution for the special mollifier
ex =TE, (2.11)
is
Wy =TV, (2.12)

As a consequence we observe that the solution for a specibfieno
fulfilling the conditione, = 71 E, can be found as

<f7 e“{> = <97T3\IJ’Y> .

If for example the operatord and L are of convolution type and if we
chose the mollifiere, also of convolution type, then the mappings
are all of translation type, which means that also the findmstruction
formula is of convolution type.

3. Fan - Beam Tomography and Edge Detection

The mathematical model of computerized tomography in twieah-
sions, for the parallel geometry, is the Radon transform,esg. B5]. It
is defined as

Rf(6,s) = - f(x)o(s — (x,0))dx

whered € S' is a unit vector and < R. In the following we summarize
a few results. The central slice theorem, or projectionrids®as nothing
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but the formal application of the adjoint operator for fixdgedtion 6 on
exp(1s0)

Rf(0,0) = (2m)"/2f(o0) . (3.1)
The Radon transform of a derivative is
0 0

see e.g. 35], and generalizations for higher derivatives. The invarsi
formula for the two — dimensional Radon transform is

1
R!=_—RIT! (3.3)
47

whereR* is the adjoint operator from, to Lo known as backprojection
Rig(a) = [ al0.(e.0)a0
and the Riesz potentidl! is defined with the Fourier transform

T(6,0) = |o]3(6, o)

where the Fourier transform acts on the second variable.
The following invariances are well established for the Rattans-
form. Consider forr € R? the shift operatord¥ f(y) = f(y — x) and

Téx’6>g(9, s)=g(0,s — (x,0)) then
RTY = TR . (3.4)
Another couple of intertwining operators is found by ragati LetU be
a unitary2 x 2 matrix andDY f(y) = f(Uy). then
RDY = DYR (3.5)

where DY g(0,s) = g(U#0,s). With (TR)* = R*T* we get the rela-
tions used in Theorem 2.4. These two invariances lead for léfiero
of convolution type and independent of the directions;, kg(xz,y) =
E.(]lx —yl|), to a reconstruction kernel for determinirigof convolution
type, independent of the direction, namely(x; 6, s) = ¥ (s — (z0)).

THEOREM 3.1. Let the mollifiere, be given as

ey(z,y) = Ey([lz —yll) (3.6)
Then the reconstruction kernel for findirfgs given as
Py (330, 5) = Wy (s — (20)) 3.7)

whereV, (s) is determined as
1

U, = EI*REV : (3.8)
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ProOFE We start with the auxiliary problem and use the inversion
formula forR

Ry = ¢
= R 'Re,

R
= -RT 'Re,

hence we get

1 -1
'l)Z)m{ = EI Rew

O

In order to find a reconstruction kernel for approximatingf where

Ly = a%k we use Theorem 2.3.

THEOREM 3.2. If we denote the reconstruction kernel for approxi-
mating f by ¢, then the reconstruction kernel for approximatihgf is
given as

Uk (30, 5) = =W (00 (s — (2,6))) (3.9)
whereWj is the smoothing operator with/;L. = LWj3 and 6y, is the
k-th component of.

ExampPLE 3.3. In the following we relate the regularization parame-
ter~ with the cut-off frequency via

b=1/v.

For the smoothing of the reconstruction part we use the figolknown
from the Shepp - Logan kernel with

B+ ] = (2m)el f

where

&||lm
LTLENI{I3) 310
and wherex|_; ) is the characteristic function of the interyalb, b]; i.e.,
it is 1 for values between-b andb and0 otherwise. This corresponds to
the reconstruction kernel

el(¢) = (2)'sinc

b 7/2 — (bs)sin(bs)
W) = 53 T3~ (bs)?

For the differentiation part we choose

(3.11)

o~

Wsf = (2m)e3 f
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with

(€)= (27r)—1sinc”§5””

(3.12)

leading to a combined mollifier of the form
Eg, = e}Y * e%

with

1€]lm

TX[_W(H&II)

which is of convolution type. With the convolution theoreor Fourier
transforms and the projection theorem for the Radon tramsfoe get

Vrep(230,5) = Opthap(s — (x,0)) (3.13)

E\Bv (€)= (2w)_1sin0%sinc

where

Yy = % (wb(s +0) — wb(s — ﬂ)) (3.14)

wherewy, is the kernel known from the Shepp-Logan filter, see (3.11).
For

b=3= % (3.15)

whereh denotes the distance of the detector elements, the filteador
proximating L, f at the detector pointg, = ¢h is

1 8¢
Y 2/n(80) = Ok ,bel. (3.16)
ke (50) = O o (3 2y —aee

The divergent beam transform or X—ray transform in two digiems
also delivers line integrals, the difference to the 2D Rattansform is
the parametrization. For the X—ray transform one uses tleegosition
a € T and the directio of the ray

Df(a,0) = /OOO Fla+t0)dt . (3.17)

If the source is moved on a circle with radinsaround the object, then
one can represent the source positionsias rw(a) wherew(a) =
(cosa,sina) ". If we parametrize the directiofh = 6(3) by the angle
between the line connecting source and center and the raelangles
where3 = 0 means the ray from the source throughthen there is the
following relation between 2D X-ray transform and 2D Radams$form

Df(rw(oz), 0([3)) = Rf(w(a + 06— 7r/2),rsinﬁ) . (3.18)
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Formally the two transforms are related by an operator wfaré =
[0, 2w [— arcsin 1/r, arcsin 1/r] the operatoiU is defined as
U : Ly(Z) — Lao(V,rsin 3)
with
Ug(rw(a),0(8)) = glw(a+ B —7/2),rsing) . (3.19)
It is an easy exercise to show tHatis a unitary operator, hendé*U =
I

LEMMA 3.4. Let X, Y7, Y5 be Hilbert spacesA : X — Yp, B :
X — Y, linear operators andU : Y; — Y5 be unitary withB = UA.
Then the reconstruction kernel for approximatidg where f solves
Bf = gisgiven as
¢, = Uy, (3.20)
where ), is the reconstruction kernel for approximatingf where f
solvesAf = g.

PrRoOOF If v, solvesA*y., = L*e, then we get, because of the fact
thatU is unitary
B*®, = A*U*Uy, = A*, = L,
which completes the proof. d

As a consequence it is now straightforward to calculaterrsttoc-
tion kernels for the fan — beam problem. We make the usuabappa-
tions in order to have the cut — off frequency independentefrecon-
struction point, see e.g.39], to get the approximate inversion formula
with ¢g, and = b = 7/h as

0 r(r—1)2 [?7
e = T [Ta-ap

arcsin1/r
/_ - Ve ((r —1)sin(8 — ) /2)wi(a + f — 7/2)

x g(a, B) cos BdBda
wherewy, is thek-th component ofs andr = arcsin ((Z=%, a')).

|z—al’

In order to test the algorithm we choose the well — known Shelppgan
phantom, where we use the densities originally given by Shepogan;
i.e., the skull has the valuz and the brain has the value( in contrast
to many authors, where these values are loweretl lepding to a brain
consisting of air, as in the outside of the skull ). The olgenside the
brain differ by1% up to3% to the surrounding tissue.
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The number of data ape= 800 source positions ang = 1024 rays per
view. The reconstruction is computed om@5 x 1025 grid.

Figure 1 shows the result of the here derived algorithm wieetee data
5% noise was added. We observe that even the height of the jinops-i
rectly computed within the numerical approximation of tlesigatives.

Then we added to the da%&: noise.
The artefacts outside the object can easily be removed bleimgnting

the support theorem for the Radon transform stating thapibfect van-
ishes on lines parallel # not meeting the support of the data, s [

FIGURE 1: Reconstruction with the here presented algoriitmthe
derivative with respect t@; ( left ) andzy( right)

Figure 2 shows the result when we reconstructed in the cklssay
and then a smoothed derivative is applied.
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FIGURE 2: Reconstruction of the, derivative with reconstruction of
the density and smoothed derivative

As consequence we note that it pays off to combine the twa stiimage
reconstruction and image analysis wherever possible.

4, Inversion Formulafor the 3D Cone Beam Transform

In the following we consider the X—ray reconstruction peshlin
three dimensions when the data are measured by firing an Xubay
emitting rays to a 2D detector. The movement of the comhinaburce
— detector determines the different scanning geometriesnany real-
world applications the source is moved on a circle aroundatbject.
From a mathematical point of view this has the disadvanthgethe data
are incomplete, the condition of Tuy-Kirillov is not fuli@t. We base our
considerations on the assumption that this condition isfgad, the re-
construction from real data nevertheless is then from thee@bdescribed
circular scanning geometry, because other data are ndalaleaio us so
far.

A first theoretical presentation of the reconstruction kémas given
by Finch [13]. The use of invariance properties was a first step towards
practical implementations, se2g]. See also the often used algorithm of
Feldkamp et al. 2] and the contribution of Defrise and Clack][ A
unified approach to those papers is contained#}. [ The approach of
Katsevich 9] differs from ours in that he avoids the Crofton symbol by

restricting the back projection to a range dependent onettnistruction
point x.
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4.1. Mathematical model. We denote withy € T the source posi-
tion, wherel' ¢ R? is a curve, and € S? is the direction of the ray.
Then the cone-beam transform of a functipre L, (R) is defined as

Df(a,0) = /OOO Fla+ 1) dt. (4.1)

The adjoint operator as mapping from(R3) — Lo(T' x S2) is given

0= [le-al g (ogi=g) e @2

Most attempts to find inversion formulae are based onRbrenula of
Grangeat first published in Grangeat's PhD thesld], see also15]:

9 Ri(w,s)

s =— | Df(a,0)5((0,w))db.  (4.3)

s=(a,w) 52

Our starting point is now the inversion formula for the 3D Radrans-
form

12
871'2 S2 882

flz) =— Rf(w,s)

dw, (4.4)

s={x,w)

that we rewrite as
1 0 ,
f(z) = 2 /32 /R%Rf(w,sﬁ (s — (z,w)) ds dw. (4.5)

We assume in the following that the Tuy - Kirillov conditios fulfilled.

Then we can change the variables as follows: /By, s) we denote
the Crofton symbol, i.e. the number of source poimts I' such that
(a,w) = s:

n(w,s) =#{a €l : (a,w) = s}.
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Settingm = 1/n, we get

F@) = 53 [, @I (00) 8 (0 - 2.0)

X |{a,w)| m(w, (a,w)) da dw

o [ [ [ praoso.was

x &' ({a—x w>)]<a w)| m(w, (a,w)) da dw

1
-y = Df(a,0) & ((0,w)) dd
g2 /r |z —al* Js2 Js2 f(@,0) 66, ))

8 (e ) .| (o a,0)) dad

[ = all

where we used thal is homogeneous of degree2 and thaty’(—s) =
—0'(s). We now introduce the operator

Tug(e) = [ o(0)¥'((0.0) . (456)
acting on the second variable of a functigfu, w) as
Th,09(w) = Tig(a,w),
and the multiplication operator
Mr h(a,8) = [{a,w)| m(w, (a,w)) h(w) 4.7)
and state the following result, see al&7]|

THEOREM 4.1. Let the condition of Tuy-Kirillov be fulfilled. Then
the inversion formula for the cone beam transform is given as

1 *
f= WD TiMrTADf

with the adjoint operatoD* of the cone beam transform afigl and M
as defined above.

Note that botHD* and M depend on the scanning cutewhereas
T1 only depends on the specific poinbf the scanning curve.

The above theorem allows for computing reconstruction édsrnto
this end we have to solve the equation

D*% = €y,
in order to write the solution dD f = g as

f(x) = (97%(96, )>y .
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In the case of exact inversioa, is the delta distribution, in the case of an
approximate inversion formula, it is an approximation a$ ttistribution.
From the above we see that

1
D '= D'y My Ty
82
and we can write
* 1 *
D ¢’Y — EPY — WD TlMFTlDem{,

hence
1
¢’Y = WTlMFTlDEW. (48)
5. Computing thereconstruction kernel
In the following, we will use (4.8) to derive an analytic fouha for
the reconstruction kernel in 3D. We use the Gaussian

_ llz—y|)?

e avy) = (2m) Ve (5.1)

as mollifier (which we write as,(y)) and get

)
73

PrRoOOF Following [8, p. 69], we have

/ D f)(a,0)5'((8,)) db = / (V)({a,w)w + y),w) dy.
SQ

wl

Ty De(a,w,z) = (a —z,w). (5.2)

For the Gaussian, this means

Ty Dey)(a,w) = — / (Vyeal(v),w) dy

wl+ta

S ety el -2

(2m) 732 / 1 2
=——=— [ exp(—5zly+z")y+2)dy.
v S 27?
We introduce a rotated coordinate system, suchuithatone of the direc-
tions. As we only integrate over"-, the integral reduces to an integration

overR? and yields the mentioned result. O

For the multiplication operatar/r-, we need the inverse of the Crofton
symbol,m. For the specific case of a circular scanning geometry, we set
n = 2 and hencen = 1/2. Applying the operatofl} to the function in
(5.2) yields the following result.
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THEOREM 5.1. Let the scanning curvE be a circle with radiusRk
and the density functiogi fulfills supp f C - S2,r < R. If the direction
vectord € S? does not lie parallel to the vectar— a, the reconstruction
kernely can be written as

C )
1/}7(6%07'%) = _2_ |:Z£{ < 79> — 2 <CL - $,9>p3}
T [ P4
) (5.3)
X / Pt =1] gy + p4{a —z,0) epl[m_”] ,
0
where
_ 1 _ (o321
a = 57 C = (2m) "
p = alla—z—(a—10)0|
B (a—z—(a—x,0)0,a— (a,0)0)*
P la—(@0) 6P fla—z— (a— .66
p3 = <CL—ZL'— <a_$79>07d_ <a79>0>
pa = |la—<(a,0)0].
If 8 lies parallel tox — a, then the kernel can be calculated as
c . )
¥y(a,0,2) = —— fla— (@, 0) 0] {a — x,0). (5.4)

Theorem 5.1 provides a means for fast computations of récmns
tion kernels, eliminating the need for pre-computed kexné&he calcu-
lation of the kernel took approximately 6.6 seconds on a x8&ktbp
system with a 3 GHz CPU, the discrete kernel 553 elements.

REMARK 5.2. The circle used in theorem 5.1 does not fulfill the
Tuy-Kirillov condition, hence the theorem only provides approxima-
tive solution. With respect to the 3D Radon transform, thads to hol-
low projections. In the 2D case, unigueness is preserved@Dithis is
subject of future research. With respect to the long objeablpm, one
additionally faces truncated projections which meansaki@r scanning
geometries, like helices are to be preferred.

6. Implementation

6.1. Invariances. As mentioned, using the approximate inverse (Al),
invariances of the operator can be used to shorten the atitmulof the
reconstruction kernel. Using our explicit formula for we easily see the
following:
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(1) The reconstruction kernel depends onlywiaz onz, i.e. only
the relative vector betweenandz is important.
(2) For the pointz = 0, we have

ZZ)V(VCL»e?x = O) = TIZJA/(CL, VT97x = O)
for every rotation matrix/.

The second invariance is only true for the point= 0. A first step
towards a fast and easy computation of a reconstructiorekess taken
by Dietz in his PhD thesis, se8][ But whereas he used a reconstruc-
tion kernel for the 3D Radon transform and subsequentlyutatied a
numerical kernel for the ray transform, we use equation) {.8erive an
analytical formula for the reconstruction for the X—rayriséorm. Us-
ing this formula, we can overcome the need for a pre-compkeedel,
which gives us more flexibility.

For the approximate invariance, we defliig’ to be the rotation ma-
trix that rotatespi="r onto a/R, i.e.

a—x a
Ut = 2
“lla—zf R

For real world measurement setups, will be so "close” to the identity
matrix that we can then assurbea = a. The reason for that is that the
radius of the sphere in which we reconstruct is (much) sméiken the
radius of the source curve. Then, instead of calculatinggbenstruction
kernel for different values af, we calculate it only forr = 0 and scale
it by a factor ofﬁ, see 8]
2

Y(a,l,x) ~ Y(a, U0,z =0).
Tying these invariances together, we see that we only needrtpute
the kernel once for one value afand the different ray directiors The
different reconstruction points are taken into account by the simple

scaling factor above.

la — |

6.2. Computational complexity. With the invariances detailed in
subsection 6.1 we can implement the approximate inverdethdt very
same complexity as the FDK algorithm:

(1) Generate the filter matrix and calculate its Fourier ¢farm
(oncel).
(2) For each source poiat
(a) Calculate the Fourier transform of the data matrix (that
the matrix with the measured data).
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(b) Multiply both matrices element-wise and calculate the i
verse Fourier transform of the resulting matrix.
(3) Use these matrices for the back projection.

The only different part is the computation of the kernel 3@trnx. As
mentioned after theorem 5.1, the kernel computation takés @ few
seconds, so this part is negligible. Thus, the two algorstlame on par
with respect to their computational requirements.

In the following, we present reconstructions from real datadly
provided by Fraunhofer 1zfP, Saarbriicken.

FIGURE 3: Physical phantom consisting of metal
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FIGURE 4: Reconstruction with the here presented algoritheft ) and
with Feldkamp algorithm and Shepp Logan kernel ( right ).

7. Conclusion

We have presented an exact inversion formula and deriveiiadbku
numerical inversion formula from it for the circular scamgpigeometry.
The numerical implementation is fast enough to no longsroala pre-
computed kernel. Instead, the kernel can be computed asopéne
measurement. As such, our method has the same numericales@mp
as the Feldkamp algorithm. However, the approximate ievkees both a
better resolution and a lower noise level.
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