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Image Reconstruction and Image Analysis in
Tomography:

Fan Beam and 3D Cone Beam

Alfred K. Louis and Thomas Weber

ABSTRACT. The result of tomographic examination is a series of
images of the region under consideration. On these reconstructions a
diagnosis is based. Automatic evaluations of these images are rather
common in nondestructive testing, in medical analysis thismay par-
tially be the case in the future. Typically the two tasks are treated
separately. This paper describes an approach where the two steps,
the image reconstruction and the image analysis, are combined. This
leads to new strategies how to develop fast algorithms. As exam-
ple we consider the standard problem in X–ray tomography andan
edge detection. We calculate a special reconstruction kernel, and we
present numerical examples.

.

1. Introduction

The filtered backprojection is the standard reconstructionmethod for
2D X—ray tomography. Already Grünbaum [6] observed that this al-
gorithm determines a smoothed version of the searched-for solution. In
different fields the calculation of such smoothed versions of the solution
is the starting point for developing algorithms, see e.g. [1, 21, 16]. A
first unified approach was given in [29], which then was generalized in
[24] for the application to linear and also to some nonlinear problems. In
[28] this so-called approximate inverse was further generalized to directly
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compute linear functionals of the solution. The calculation of derivatives
for functions of one variable was already mentioned by Eckhardt, [9],
and also, including numerical experiments, in [24].
In this paper we study the problem of determiningLf wheref is the
solution of the linear equationAf = g. The standard case in reconstruc-
tion problems is that the operatorL is the identity, hence we calculate
the solution itself. If we include in the solution step the evaluation of
the reconstruction, then we may enhance this task by incorporating parts
of the evaluation in the reconstruction. An example is edge detection
where smoothed derivatives of the images are calculated andthen further
processed. In that caseL may be a differential operator, which increases
the degree of the ill-posedness of the whole problem. Other possibilities
are the direct calculation of wavelet coefficients of the solution, as orig-
inally described in Sec. 3.4.3 in [31]. Applications to tomography are
given in [3, 37].

Often, the two procedures are executed independently. If the image
is itself the result of a reconstruction, for example in medical imaging,
one can envisage, that the information from the reconstruction step could
be included into the analysis step, which then should give better results.

As example, for a given picturef we compute partial derivatives
Lk = ∂

∂xk
, hence the result can be written as

Lkβf = fkβ = WβLkf (1.1)

for a smoothing operatorWβ. If the imagef is a reconstruction, say
the solution of

Af = g (1.2)

we can write the solution, when filtering is considered, as

fγ = Eγf = EγA
†g (1.3)

whereA
† denotes the generalized inverse ofA. Combining these two

steps we get

fkβγ = WβLkEγA
†g (1.4)

= Ψkβγg . (1.5)

There arise several questions

• is there an optimal relation between the two smoothing opera-
torsWβ andEγ ?

• how to choose the parametersβ andγ ?
• can this operatorΨkβγ be efficiently evaluated ?
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Concerning the last question we know that for the reconstruction step
a convolution operatorEγ leads to the filtered backprojection method.
Hence we are looking for similar structures in the operatorWβ.

After describing the general approach of developing algorithms for
calculatingLf in Section 2 we present the special case of fan - beam
tomography in Section 3 for the case whereLk is the differentiation of
first order in thek - th coordinate direction. We then consider the standard
reconstruction problem; i.e.L the identity, for cone - beam tomography
for a circular scanning geometry.

2. Approximate Inverse for Combining Reconstruction and
Analysis

This section is based on [28] where we generalize the method of the
approximate inverse as analyzed in [24]. Let A : X → Y be a linear
operator between the Hilbert spacesX andY andL : X → Z be a linear
operator between the Hilbert spacesX andZ. As usual we first formulate
the reconstruction part

Af = g . (2.1)

Next an operationL on the so computed solutionf for the image analysis
is performed

Lf = LA†g , (2.2)

whereA† denotes the generalized inverse ofA. Now we adapt the con-
cept of approximate inverse, first introduced in [29], where we now com-
pute instead ofLf an approximation

(Lf)γ = 〈Lf, eγ〉

with a prescribed mollifiereγ . We formulate in the following theorem the
principle of the reconstruction method.

THEOREM 2.1. Let eγ be a suitably chosen mollifier andψγ be the
solution of the auxiliary problem

A∗ψγ(x, ·) = L∗eγ(x, ·) . (2.3)

Then the smoothed version of the image analysis operation isdirectly
computed from the given datag as

(Lf)γ(x) = 〈g, ψγ(x, ·)〉 (2.4)

PROOF. We write the smoothed version of the image analysis part as

(Lf)γ(x) = 〈Lf, eγ(x, ·)〉
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Now we use the adjoint operator ofL and the auxiliary problem to con-
tinue

(Lf)γ(x) = 〈f, L∗eγ(x, ·)〉

= 〈f,A∗ψγ(x, ·)〉

= 〈g, ψγ(x, ·)〉

where in the last step we have used the original equationAf = g. �

DEFINITION 2.2. The operatorSγ : Y → Z defined as

Sγg(x) = 〈g, ψγ(x, ·)〉 (2.5)

is called theapproximate inverseof A to compute an approximation of
Lf andψγ is called thereconstruction kernel.

If we know the reconstruction kernel for computingf , then we can
solve the above problem for computingLf in the following way.

THEOREM 2.3. Let ψ̃γ be the sufficiently smooth reconstruction ker-
nel for computingf , then the reconstruction kernelψγ for approximating
Lf can be determined as

ψγ = LWβψ̃γ (2.6)

whereLWβ acts on the first variable of̃ψγ .

PROOF. The approximation ofLf is here computed as the applica-
tion of L on fγ(x) = 〈g, ψ̃γ(x, ·)〉. Interchanging the application ofL
and the integration, for sufficiently smooth̃ψγ , gives the result. �

It is shown in [28] thatSγ is a regularization for computingLf if the
smoothness ofeγ is adapted to the smoothing ofA and the inverse ofL
in the following sense

lim
ε→0,gε→g

Sγ(ε,gε)g
ε = LA†g (2.7)

if gε is in the range ofLA†.

The computational efficiency of the approximate inverse heavily de-
pends on the use of invariances. We consider again the reconstruction
problem in tomography. If we chose for each reconstruction point x
a special mollifier, namelyeγ(x, ·), then the reconstruction kernel also
depends onx, the number of values to store is then the number of re-
construction points times the number of data. If we use invariances, for
example translation and rotational invariances of the Radon transform
and we use these invariances to produce the mollifier we can reduce this
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number of values to compute and store to just the number of views per
direction. The mathematical basis for this can be found in [24]. Here we
cite the corresponding result for the combination of reconstruction and
image analysis from [28].

THEOREM 2.4. Let A : X → Y and L : X → Z be the two
operators as above. Let

T1 : Z → Z

T2 : X → X

T3 : Y → Y

be linear operators with

L∗T1 = T2L
∗ (2.8)

T2A
∗ = A∗T3 (2.9)

and letΨγ be the solution of the auxiliary problem for a general mollifier
Eγ

A∗Ψγ = L∗Eγ . (2.10)

Then the solution for the special mollifier

eγ = T1Eγ (2.11)

is
ψγ = T3Ψγ (2.12)

As a consequence we observe that the solution for a special mollifier
fulfilling the conditioneγ = T1Eγ can be found as

〈f, eγ〉 = 〈g, T3Ψγ〉 .

If for example the operatorsA andL are of convolution type and if we
chose the mollifiereγ also of convolution type, then the mappingsTk

are all of translation type, which means that also the final reconstruction
formula is of convolution type.

3. Fan - Beam Tomography and Edge Detection

The mathematical model of computerized tomography in two dimen-
sions, for the parallel geometry, is the Radon transform, see e.g. [35]. It
is defined as

Rf(θ, s) =

∫

R2

f(x)δ(s − 〈x, θ〉)dx

whereθ ∈ S1 is a unit vector ands ∈ R. In the following we summarize
a few results. The central slice theorem, or projection theorem is nothing
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but the formal application of the adjoint operator for fixed directionθ on
exp(ısσ)

R̂f(θ, σ) = (2π)1/2f̂(σθ) . (3.1)

The Radon transform of a derivative is

R
∂

∂xk
f(θ, s) = θk

∂

∂s
Rf(θ, s) (3.2)

see e.g. [35], and generalizations for higher derivatives. The inversion
formula for the two – dimensional Radon transform is

R
−1 =

1

4π
R

∗
I
−1 (3.3)

whereR∗ is the adjoint operator fromL2 toL2 known as backprojection

R
∗g(x) =

∫

S1

g(θ, 〈x, θ〉)dθ

and the Riesz potentialI−1 is defined with the Fourier transform

Î−1g(θ, σ) = |σ|ĝ(θ, σ)

where the Fourier transform acts on the second variable.
The following invariances are well established for the Radon trans-

form. Consider forx ∈ R2 the shift operatorsT x
2 f(y) = f(y − x) and

T
〈x,θ〉
3 g(θ, s) = g(θ, s − 〈x, θ〉) then

RT x
2 = T

〈x,θ〉
3 R . (3.4)

Another couple of intertwining operators is found by rotation. LetU be
a unitary2 × 2 matrix andDU

2 f(y) = f(Uy). then

RDU
2 = DU

3 R (3.5)

whereDU
3 g(θ, s) = g(Uθ, s). With (TR)∗ = R

∗T ∗ we get the rela-
tions used in Theorem 2.4. These two invariances lead for a mollifier
of convolution type and independent of the directions; i.e., eγ(x, y) =
Eγ(‖x−y‖), to a reconstruction kernel for determiningf of convolution
type, independent of the direction, namelyψγ(x; θ, s) = Ψγ(s− 〈xθ〉).

THEOREM 3.1. Let the mollifiereγ be given as

eγ(x, y) = Eγ(‖x− y‖) (3.6)

Then the reconstruction kernel for findingf is given as

ψγ(x; θ, s) = Ψγ(s− 〈xθ〉) (3.7)

whereΨγ(s) is determined as

Ψγ =
1

4π
I−1

REγ . (3.8)
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PROOF. We start with the auxiliary problem and use the inversion
formula forR

R
∗ψγ = eγ

= R
−1

Reγ

=
1

4π
R

∗
I
−1

Reγ

hence we get

ψγ =
1

4π
I
−1

Reγ

�

In order to find a reconstruction kernel for approximatingLkf where
Lk = ∂

∂xk
we use Theorem 2.3.

THEOREM 3.2. If we denote the reconstruction kernel for approxi-
matingf by ψ̃γ , then the reconstruction kernel for approximatingLkf is
given as

ψkγβ(x; θ, s) = −W̃β

(
θkψ̃

′
γ(s − 〈x, θ〉)

)
(3.9)

whereW̃β is the smoothing operator with̃WβL = LWβ and θk is the
k-th component ofθ.

EXAMPLE 3.3. In the following we relate the regularization parame-
terγ with the cut-off frequencyb via

b = 1/γ .

For the smoothing of the reconstruction part we use the mollifier known
from the Shepp - Logan kernel with

Êb ∗ f = (2π)ê1b f̂

where

ê1b(ξ) = (2π)−1sinc
‖ξ‖π

2b
χ[−b,b](‖ξ‖) (3.10)

and whereχ[−b,b] is the characteristic function of the interval[−b, b]; i.e.,
it is 1 for values between−b andb and0 otherwise. This corresponds to
the reconstruction kernel

wb(s) =
b2

2π3

π/2 − (bs) sin(bs)

π2/4 − (bs)2
. (3.11)

For the differentiation part we choose

Ŵβf = (2π)ê2β f̂
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with

ê2β(ξ) = (2π)−1sinc
‖ξ‖π

β
(3.12)

leading to a combined mollifier of the form

Eβγ = e1γ ∗ e2β

with

Êβγ(ξ) = (2π)−1sinc
‖ξ‖π

2γ
sinc

‖ξ‖π

β
χ[−γ,γ](‖ξ‖)

which is of convolution type. With the convolution theorem for Fourier
transforms and the projection theorem for the Radon transform we get

ψkβb(x; θ, s) = θkψβb(s− 〈x, θ〉) (3.13)

where

ψβb =
1

2β

(
wb(s+ β) − wb(s− β)

)
(3.14)

wherewb is the kernel known from the Shepp-Logan filter, see (3.11).
For

b = β =
π

h
(3.15)

whereh denotes the distance of the detector elements, the filter forap-
proximatingLkf at the detector pointssℓ = ℓh is

ψk,π/h(sℓ) = θk
1

π2h3

8ℓ
(
3 + 4ℓ2

)2
− 64ℓ2

, ℓ ∈ Z . (3.16)

The divergent beam transform or X–ray transform in two dimensions
also delivers line integrals, the difference to the 2D Radontransform is
the parametrization. For the X–ray transform one uses the source position
a ∈ Γ and the directionθ of the ray

Df(a, θ) =

∫ ∞

0
f(a+ tθ)dt . (3.17)

If the source is moved on a circle with radiusr around the object, then
one can represent the source positions asa = rω(α) whereω(α) =
(cosα, sinα)⊤. If we parametrize the directionθ = θ(β) by the angle
between the line connecting source and center and the ray by the angleβ
whereβ = 0 means the ray from the source through0, then there is the
following relation between 2D X–ray transform and 2D Radon transform

Df
(
rω(α), θ(β)

)
= Rf

(
ω(α+ β − π/2), r sin β

)
. (3.18)
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Formally the two transforms are related by an operator wherefor V =
[0, 2π[×[− arcsin 1/r, arcsin 1/r] the operatorU is defined as

U : L2(Z) → L2(V, r sin β)

with

Ug(rω(α), θ(β)) = g(ω(α + β − π/2), r sin β) . (3.19)

It is an easy exercise to show thatU is a unitary operator, henceU∗
U =

I.

LEMMA 3.4. LetX, Y1, Y2 be Hilbert spaces,A : X → Y1, B :
X → Y2 linear operators andU : Y1 → Y2 be unitary withB = UA.
Then the reconstruction kernel for approximatingLf wheref solves
Bf = g is given as

Φγ = Uψγ (3.20)

whereψγ is the reconstruction kernel for approximatingLf wheref
solvesAf = g.

PROOF. If ψγ solvesA∗ψγ = L∗eγ then we get, because of the fact
thatU is unitary

B∗Φγ = A∗
U

∗
Uψγ = A∗ψγ = L∗eγ

which completes the proof. �

As a consequence it is now straightforward to calculate reconstruc-
tion kernels for the fan – beam problem. We make the usual approxima-
tions in order to have the cut – off frequency independent of the recon-
struction point, see e.g. [35], to get the approximate inversion formula
with ψβb andβ = b = π/h as

( ∂f
∂xk

)
(x) =

r(r − 1)2

4

∫ 2π

0
|a− x|−2

∫ arcsin 1/r

− arcsin 1/r
ψπ/h

(
(r − 1) sin(β − η)/2

)
ωk(α+ β − π/2)

×g(α, β) cos βdβdα

whereωk is thek-th component ofω andη = arcsin
(
〈 x−a
|x−a| , a

⊥〉
)
.

In order to test the algorithm we choose the well – known Shepp– Logan
phantom, where we use the densities originally given by Shepp – Logan;
i.e., the skull has the value2 and the brain has the value1 ( in contrast
to many authors, where these values are lowered by1 leading to a brain
consisting of air, as in the outside of the skull ). The objects inside the
brain differ by1% up to3% to the surrounding tissue.
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The number of data arep = 800 source positions andq = 1024 rays per
view. The reconstruction is computed on a1025 × 1025 grid.
Figure 1 shows the result of the here derived algorithm whereto the data
5% noise was added. We observe that even the height of the jumps is cor-
rectly computed within the numerical approximation of the derivatives.

Then we added to the data5% noise.

The artefacts outside the object can easily be removed by implementing
the support theorem for the Radon transform stating that theobject van-
ishes on lines parallel toθ not meeting the support of the data, see [2].
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FIGURE 1: Reconstruction with the here presented algorithmfor the
derivative with respect tox1( left ) andx2( right )

Figure 2 shows the result when we reconstructed in the classical way
and then a smoothed derivative is applied.
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FIGURE 2: Reconstruction of thex1 derivative with reconstruction of
the density and smoothed derivative

As consequence we note that it pays off to combine the two steps of image
reconstruction and image analysis wherever possible.

4. Inversion Formula for the 3D Cone Beam Transform

In the following we consider the X–ray reconstruction problem in
three dimensions when the data are measured by firing an X–raytube
emitting rays to a 2D detector. The movement of the combination source
– detector determines the different scanning geometries. In many real-
world applications the source is moved on a circle around theobject.
From a mathematical point of view this has the disadvantage that the data
are incomplete, the condition of Tuy-Kirillov is not fulfilled. We base our
considerations on the assumption that this condition is satisfied, the re-
construction from real data nevertheless is then from the above described
circular scanning geometry, because other data are not available to us so
far.

A first theoretical presentation of the reconstruction kernel was given
by Finch [13]. The use of invariance properties was a first step towards
practical implementations, see [26]. See also the often used algorithm of
Feldkamp et al. [12] and the contribution of Defrise and Clack [7]. A
unified approach to those papers is contained in [39]. The approach of
Katsevich [19] differs from ours in that he avoids the Crofton symbol by
restricting the back projection to a range dependent on the reconstruction
pointx.
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4.1. Mathematical model. We denote witha ∈ Γ the source posi-
tion, whereΓ ⊂ R

3 is a curve, andθ ∈ S2 is the direction of the ray.
Then the cone-beam transform of a functionf ∈ L2(R) is defined as

Df(a, θ) =

∫ ∞

0
f(a+ tθ) dt. (4.1)

The adjoint operator as mapping fromL2(R
3) → L2(Γ × S2) is given

as

D
∗g(x) =

∫

Γ
‖x− a‖−2 g

(
a,

x− a

‖x− a‖

)
da. (4.2)

Most attempts to find inversion formulae are based on theFormula of
Grangeat, first published in Grangeat’s PhD thesis [14], see also [15]:

∂

∂s
Rf(ω, s)

∣∣∣∣
s=〈a,ω〉

= −

∫

S2

Df(a, θ)δ′(〈θ, ω〉) dθ. (4.3)

Our starting point is now the inversion formula for the 3D Radon trans-
form

f(x) = −
1

8π2

∫

S2

∂2

∂s2
Rf(ω, s)

∣∣∣∣
s=〈x,ω〉

dω, (4.4)

that we rewrite as

f(x) =
1

8π2

∫

S2

∫

R

∂

∂s
Rf(ω, s)δ′(s− 〈x, ω〉) ds dω. (4.5)

We assume in the following that the Tuy - Kirillov condition is fulfilled.
Then we can change the variables as follows: Byn(ω, s) we denote
the Crofton symbol, i.e. the number of source pointsa ∈ Γ such that
〈a, ω〉 = s:

n(ω, s) = #{a ∈ Γ : 〈a, ω〉 = s}.
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Settingm = 1/n, we get

f(x) =
1

8π2

∫

S2

∫

Γ
(Rf)′(ω, 〈a, ω〉) δ′(〈a− x, ω〉)

× |〈ȧ, ω〉|m(ω, 〈a, ω〉) da dω

= −
1

8π2

∫

S2

∫

Γ

∫

S2

Df(a, θ) δ′(〈θ, ω〉) dθ

× δ′(〈a− x, ω〉) |〈ȧ, ω〉|m(ω, 〈a, ω〉) da dω

= +
1

8π2

∫

Γ

1

‖x− a‖2

∫

S2

∫

S2

Df(a, θ) δ′(〈θ, ω〉) dθ

× δ′(

〈
x− a

‖x− a‖
, ω

〉
) |〈ȧ, ω〉| m(ω, 〈a, ω〉) da dω

where we used thatδ′ is homogeneous of degree−2 and thatδ′(−s) =
−δ′(s). We now introduce the operator

T1g(ω) =

∫

S2

g(θ) δ′(〈θ, ω〉) dθ, (4.6)

acting on the second variable of a functiong(a, ω) as

T1,ag(ω) = T1g(a, ω),

and the multiplication operator

MΓ h(a, θ) = |〈ȧ, ω〉| m(ω, 〈a, ω〉) h(ω) (4.7)

and state the following result, see also [27].

THEOREM 4.1. Let the condition of Tuy-Kirillov be fulfilled. Then
the inversion formula for the cone beam transform is given as

f =
1

8π2
D

∗T1MΓT1Df

with the adjoint operatorD∗ of the cone beam transform andT1 andMΓ

as defined above.

Note that bothD∗ andMΓ depend on the scanning curveΓ, whereas
T1 only depends on the specific pointa of the scanning curve.

The above theorem allows for computing reconstruction kernels. To
this end we have to solve the equation

D
∗ψγ = eγ ,

in order to write the solution ofDf = g as

f(x) = 〈g, ψγ(x, ·)〉Y .
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In the case of exact inversion,eγ is the delta distribution, in the case of an
approximate inversion formula, it is an approximation of this distribution.
From the above we see that

D
−1 =

1

8π2
D

∗T1MΓT1

and we can write

D
∗ψγ = eγ =

1

8π2
D

∗T1MΓT1Deγ ,

hence

ψγ =
1

8π2
T1MΓT1Deγ . (4.8)

5. Computing the reconstruction kernel

In the following, we will use (4.8) to derive an analytic formula for
the reconstruction kernel in 3D. We use the Gaussian

eγ(x, y) = (2π)−3/2 1

γ3
e
− ‖x−y‖2

2γ2 (5.1)

as mollifier (which we write asex(y)) and get

T1Deγ(a, ω, x) =
(2π)−1/2

γ3
e
− 1

2γ2
〈a−x,ω〉2

〈a− x, ω〉 . (5.2)

PROOF. Following [8, p. 69], we have∫

S2

[Df ](a, θ)δ′(〈θ, ω〉) dθ = −

∫

ω⊥

〈[∇f ](〈a, ω〉ω + y), ω〉 dy.

For the Gaussian, this means

[T1Dex](a, ω) = −

∫

ω⊥+a
〈[∇yex](y), ω〉 dy

=
1

γ2

〈∫

ω⊥+a
e(‖y − x‖)(y − x) dy, ω

〉

=
(2π)−3/2

γ5

∫

ω⊥

exp(−
1

2γ2
‖y + z‖2)(y + z) dy.

We introduce a rotated coordinate system, such thatω is one of the direc-
tions. As we only integrate overω⊥, the integral reduces to an integration
overR2 and yields the mentioned result. �

For the multiplication operatorMΓ, we need the inverse of the Crofton
symbol,m. For the specific case of a circular scanning geometry, we set
n = 2 and hencem = 1/2. Applying the operatorT1 to the function in
(5.2) yields the following result.
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THEOREM 5.1. Let the scanning curveΓ be a circle with radiusR
and the density functionf fulfills supp f ⊂ r ·S2, r < R. If the direction
vectorθ ∈ S2 does not lie parallel to the vectorx−a, the reconstruction
kernelψ can be written as

ψγ(a, θ, x) = −
C

2π

[
p3

p4

{
〈ȧ, θ〉 − 2α 〈a− x, θ〉 p3

}

×

∫ 1

0
ep1[p2t2−1] dt + p4 〈a− x, θ〉 ep1[p2−1]

]
,

(5.3)

where

α =
1

2γ2
, C = (2π)−3/2 1

γ3

p1 = α ‖a− x− 〈a− x, θ〉 θ‖2

p2 =
〈a− x− 〈a− x, θ〉 θ, ȧ− 〈ȧ, θ〉 θ〉2

‖ȧ− 〈ȧ, θ〉 θ‖2 ‖a− x− 〈a− x, θ〉 θ‖2

p3 = 〈a− x− 〈a− x, θ〉 θ, ȧ− 〈ȧ, θ〉 θ〉

p4 = ‖ȧ− 〈ȧ, θ〉 θ‖ .

If θ lies parallel tox− a, then the kernel can be calculated as

ψγ(a, θ, x) = −
C

2π
‖ȧ− 〈ȧ, θ〉 θ‖2 〈a− x, θ〉 . (5.4)

Theorem 5.1 provides a means for fast computations of reconstruc-
tion kernels, eliminating the need for pre-computed kernels. The calcu-
lation of the kernel took approximately 6.6 seconds on a x86 desktop
system with a 3 GHz CPU, the discrete kernel has5132 elements.

REMARK 5.2. The circle used in theorem 5.1 does not fulfill the
Tuy-Kirillov condition, hence the theorem only provides anapproxima-
tive solution. With respect to the 3D Radon transform, this leads to hol-
low projections. In the 2D case, uniqueness is preserved, in3D this is
subject of future research. With respect to the long object problem, one
additionally faces truncated projections which means thatother scanning
geometries, like helices are to be preferred.

6. Implementation

6.1. Invariances. As mentioned, using the approximate inverse (AI),
invariances of the operator can be used to shorten the calculation of the
reconstruction kernel. Using our explicit formula forψ, we easily see the
following:
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(1) The reconstruction kernel depends only viaa−x onx, i.e. only
the relative vector betweena andx is important.

(2) For the pointx = 0, we have

ψγ(V a, θ, x = 0) = ψγ(a, V Tθ, x = 0)

for every rotation matrixV .

The second invariance is only true for the pointx = 0. A first step
towards a fast and easy computation of a reconstruction kernel was taken
by Dietz in his PhD thesis, see [8]. But whereas he used a reconstruc-
tion kernel for the 3D Radon transform and subsequently calculated a
numerical kernel for the ray transform, we use equation (4.8) to derive an
analytical formula for the reconstruction for the X—ray transform. Us-
ing this formula, we can overcome the need for a pre-computedkernel,
which gives us more flexibility.

For the approximate invariance, we defineUx
T to be the rotation ma-

trix that rotates a−x
‖a−x‖ ontoa/R, i.e.

Ux
T
a− x

‖a− x‖
=
a

R
.

For real world measurement setups,Ux will be so ”close” to the identity
matrix that we can then assumeUxȧ = ȧ. The reason for that is that the
radius of the sphere in which we reconstruct is (much) smaller than the
radius of the source curve. Then, instead of calculating thereconstruction
kernel for different values ofx, we calculate it only forx = 0 and scale
it by a factor of R2

‖a−x‖2 , see [8]

ψ(a, θ, x) ≈
R2

‖a− x‖
ψ(a,Ux

Tθ, x = 0).

Tying these invariances together, we see that we only need tocompute
the kernel once for one value ofa and the different ray directionsθ. The
different reconstruction pointsx are taken into account by the simple
scaling factor above.

6.2. Computational complexity. With the invariances detailed in
subsection 6.1 we can implement the approximate inverse with the very
same complexity as the FDK algorithm:

(1) Generate the filter matrix and calculate its Fourier transform
(once!).

(2) For each source pointa
(a) Calculate the Fourier transform of the data matrix (thatis,

the matrix with the measured data).
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(b) Multiply both matrices element-wise and calculate the in-
verse Fourier transform of the resulting matrix.

(3) Use these matrices for the back projection.

The only different part is the computation of the kernel 3D-matrix. As
mentioned after theorem 5.1, the kernel computation takes only a few
seconds, so this part is negligible. Thus, the two algorithms are on par
with respect to their computational requirements.

In the following, we present reconstructions from real data, kindly
provided by Fraunhofer IzfP, Saarbrücken.

FIGURE 3: Physical phantom consisting of metal
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FIGURE 4: Reconstruction with the here presented algorithm( left ) and
with Feldkamp algorithm and Shepp Logan kernel ( right ).

7. Conclusion

We have presented an exact inversion formula and derived a suitable
numerical inversion formula from it for the circular scanning geometry.
The numerical implementation is fast enough to no longer rely on a pre-
computed kernel. Instead, the kernel can be computed as partof the
measurement. As such, our method has the same numerical complexity
as the Feldkamp algorithm. However, the approximate inverse has both a
better resolution and a lower noise level.
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des Télécommunications, 1997

15. P. GrangeatMathematical framework of cone beam 3D reconstruction via the first
derivative of the Radon transformin: G. T. Herman, A. K. Louis and F. Natterer
(eds): Mathematical methods in tomography, springer Lecture Notes in MAthemat-
ics 1991, pp. 66–97.

16. I. Hazou and D. C. SolmonInversion of the exponential X-ray transform. I: Analysis,
Math. Mth. Appl. Sci. 10 (1988), pp. 561–574.

17. B. JähneImage Processing for Scientific Applications, CRC Press, Boca Raton, 2nd
ed. 2004

18. P. Jonas and A. K. LouisA Sobolev space analysis of linear regularization methods
for ill–posed problemsJ. Inv. Ill-Posed Probl. 9 (2001), pp. 59-74

19. A. KatsevichAnalysis of an exact inversion algorithm for spiral cone-beam ct
Physics in Medicine and Biology, 47 (2002) pp. 2583–2597.

20. A. KatsevichImproved cone beam local tomography, Inverse Problems, 22 (2006),
pp. 627–643

21. A. K. LouisAcceleration of convergence for finite element solutions ofthe Poisson
equation, Numer. Math. 33 ( 1979) pp. 43–53

22. A. K. LouisApproximate inverse of the 3D Radon transform, Math. Meth. Appl. Sci.
5 (1983), pp. 176–185.

23. A. K. LouisInverse und schlecht gestellte Probleme, Teubner, Stuttgart, 1989.
24. A. K. Louis Approximate inverse for linear and some nonlinear problemsInverse

Problems, 12 (1996), pp. 175-190
25. A. K. LouisA Unified approach to regularization methods for linear ill–posed prob-

lems, Inverse Problems, 15 (1999), pp. 489–498.
26. A. K. Louis Filter design in three-dimensional cone beam tomography: circular

scanning geometry, Inverse Problems, 19 (2003), pp. S31-S40.
27. A. K. LouisDevelopment of algorithms in computerized tomographyin: G. Olafsson

and E. T. Quinto: The Radon transform, Inverse Problems and Tomography, AMS
PSAM 63 (2006) pp. 25–42.



20 ALFRED K. LOUIS AND THOMAS WEBER

28. A. K. LouisCombining image reconstruction and image analysis with an application
to 2D tomography, SIAM J. Imaging Sciences, 2008, accepted

29. A. K. Louis and P. MaassA mollifier method for linear operator equations of the first
kind, Inverse Problems, 6 (1990), pp. 427–440

30. A. K. Louis and P. MaassContour reconstruction in 3-D X—ray CT, IEEE Transac-
tions on Medical Imaging, 12 (1993), pp. 764–769

31. A. K. Louis, P. Maass and A. RiederWavelets, 2nd ed., Teubner, Stuttgart, 1989 and
Wiley, Chichester, 1997 ( English translation )

32. A. K. Louis, T. Weber and D. TheisComputing reconstruction kernels for circular
3D cone beam tomographyIEEE Trans. Med. Imaging 2008, to appear

33. D. A. MurioThe mollification method and the numerical solution of ill-posed prob-
lems, Wiley, Chichester, 1993

34. F. NattererError bounds for Tikhonov regularization in Hilbert spaces, Appl. Anal.,
18, 29 – 37, 1984

35. F. NattererThe mathematics of computerized tomography, Wiley and Teubner,
Stuttgart, 1986
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